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ABSTRACT

This report presents an analytical investigation of the effect of
unmodeled measurement system errors on the accuracy of aircraft stability
and control derivatives identified from flight test data. Such error
sources include biases, scale factor errors, instrument position errors,
misalignments, and instrument dynamics. Output error identification
algorithms that tend to minimize quadratic functions of the difference

between actual and modeled aircraft trajectory measurements are studied.

Two techniques - ensemble analysis and simulated data analysis — are
formulated to determine the quantitative variations to the identified
parameters resulting from the unmodeled instrumentation errors. The
parameter accuracy that would result from flight tests of the F-4C air-
craft with typical quality instrumentation is determined using these

techniques.

It is shown that unmodeled instrument errors can greatly increase
the uncertainty in the value of the identified parameters. Some improvement
can be made to the identification accuracy by treating the error sources
as unknown parameters and identifying them along with the stability and
control derivatives. Additional accuracy improvement can be obtained by
choosing elements of the identification cost algorithm's function weighting

matrix so that the sensitivity to the dominant error sources is reduced.

Computation of the sensitivity matrix of aircraft parameter deviations
to individual instrumentation error sources is made to enable determining
what statistical variations the identified parameters will have due to each
of the error sources. This sensitivity matrix is also used to specify
instrumentation quality necessary for obtaining aircraft parameters to a

desired level of accuracy.

General recommendations are made of procedures to be followed to insure
that the measurement system associated with identifying stabilty and control

derivatives from flight test provides sufficient accuracy.
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SYMBOLS

B vector of biases affecting measurement of y
B ..

c vector of biases affecting measurement of u
be, bq, ba’ biases in the longitudinal output measurements
bu’ bn :

b4
bn , be
z q
bB’ bp’ br’ biases in the lateral output measurements
b, b
¢’ ny’
b*, b-

P T

C matrix which accounts for cross-product of inertia
term in the lateral equations of motion

c.g. center—of-gravity

D, D(p) control measurement matrix relating u to y

D(p) model of D containing parameter estimates p

Enoise ' covariance of parameter estimate errors due to the
output noise wi

e :  measurement errors

eij elements of the T matrix

ey mean measurement errors

ex random constant measurement errors

egs eq, e, scale factor errors in the longitudinal output

e, oy measurements

e__, e

nz q
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¢’ eny9 ep’

e

e

F, F(p)

F(p)

G, G(P)
G(p)

g
H, H(p)
1

Ixx, Izz

Ixz

K

L8, Lp, Lr, L8a, Lér

scale factor errors in the lateral output measurements

system dynamics matrix containing some of the

unknown parameters p

model of system dynamics matrix containing parameter

estimates p

diagonal matrix representing inverse of control

measurements' time constants

diagonal matrix representing inverse of output

instruments' time constants

control distribution matrix containing some of

the unknown parameters p

model of control distribtuion matrix containing

parameter estimates ;

acceleration due to gravity

model of H containing parameter estimates ;
identity matrix

moments of inertia about the aircraft longitudinal

and vertical axes

product of inertia of aircraft in the longitudinal

plane

performance index used to estimate parameters in

the identification process
conversion from radians to degrees

roll moments due to lateral velocity, roll rate,
yaw rate, aileron deflection, and rudder deflection

perturbations
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Mq, Mw, Mu, Mge pitching moment due to pitch angle, vertical speed,

longitudinal speed and elevator deflection perturbations

NB, Np, Nr, Néa, Nér yvav moments due to lateral velocity, roll rate, yaw

rate, aileron deflection, and rudder deflection

perturbations
n number of points collected in the measurement sequence
n(k) ’ quantity representing error due to signal quantization
n_» ny, n, longitudinal, lateral, and vertical aircraft accelerations
nxc’ nyc’ n,. ' corrections to accelerometer readings
p : vector of parameters to be estimated
b estimated value of the vector p
Py 4, T roll, pitch and yaw attitude rates
Py unknown biases to be estimated
pp unknown stability and control derivatives to be
estimated
Py unknown state initial conditions to be estimated
Q . quantization ievel
R covariance matrix of measurement noise Wy
Rc covariance matrix of LA
T matrix representing scale factor errors and cross-
coupling errors in the measurement of y
Tc ‘ ' diagonal matrix representing scale factor errors
in the measurement of u
u control input vector
U, Vv, W forward, lateral, and vertical velocity perturbations
Up indicated value of u due to scaling and bias errors
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Yo, wq, Vix?
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X
veg
Xw, Xu
X, X
’y )z

Y8, Yda, YOr

Zw, Zu, Zée

z (k)

value of 41 due to measurement system lags

measurement value of up corrupted by noise

nominal airspeed
control measurement noise

contaminating output measurement noise assumed to
be white

standard deviation of noise in the longitudinal
output measurements

angle-of-attack vane distance from the aircraft
center of gravity

longitudinal force due to vertical and longitudinal

speed perturbations
aircraft state vector

components of the accelerometer position from the

aircraft c.g.

side force on aircraft due to lateral velocity,

aileron deflection, and rudder deflection perturbations
measurement vector of aircraft state and its derivatives

indicated value of Yo due to scaling, cross-coupling,

and bias errors

value of Y1 due to measurement system lags

true value of y

vertical force due to vertical speed, longitudinal

speed, and elevator deflection perturbations

sampled signal



nominal angle-of-attack
nominal sideslip angle

misalignments of the longitudinal and vertical

accelerometers about the aircraft lateral axis

misalignments of the roll and yaw gyros about the

aircraft lateral axis

misalignments of the roll and yaw angular accelerometers

about the aircraft lateral axis

error in p obtained from an individual collection

of measurement data
mean value of Ap

time step of the numerical integration method
sample time step

elevator deflection

Kroneker delta

the difference between p and 5

errors in the accelerometer location
error in e.g. location
error in a-vane location

nominal pitch angle

nominal yaw angle

correlation of consecutive sampled terms
standard deviation of n(k)

time delay in sampling control input

nominal roll angle
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NOTATION

time derivative of variable
sample of variable at ith instant
estimated value of a parameter
expected value of a variable
matrix transpose

matrix inverse

gradient of a constant with respect to the vector p.
For a constant, this is taken to be a row vector.
For a vector, this is taken to be a matrix with the
number of columns equal to the order of p and the

number of rows equal to the order of the vector.

summation of points from 1 through n

perturbation of a quantity about the nominal value

or trim position

modification of parameter due to cross-product of

inertia terms

measured value of aircraft states and their derivatives
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INTRODUCTION

The process of determining stability and control derivatives of an
aircraft from flight test data is called aircraft parameter identification.
There are several reasons why this process has developed into a very

important field of endeavor. These include:

1. Many instances where the prototype aircraft do not have the same
characteristics as predicted by their wind tunnel models. The
cost to the United States government due to out-of-control aircraft
losses has been subtantial(l). Major cost and safety considerations
motivate determining ways of obtaining better knowledge of the air-

craft parameters;

2. Requirements for better understanding and calibration of wind
tunnel testing and its relationship to actual flight vehicle

performance;

3. The potential of allowing the deeper understanding of aerodynamic

phenomena and the felétionship to vehicle stability;

4, Requirements for ground-based simulators which are more accurate

representations of the aircraft in all flight regimes;

5. Requirements for superior stability augmentation and adaptive

flight control systems.

There are three essential elements in the development of more adequate

methods for identifying aircraft parameters from flight data:

1. Improved algorithms and computer programs to identify the derivatives,
their confidence levels (variances)., and related parameters such as

sensor errors and wind gusts;



2. The determination of proper seqﬁences of flight control inputs
(surface deflections) which will excite all the aircraft response
modes from which parameters are to be extracted, and methods of
displaying this information to the test pilot so that he is aware

of when a suitable maneuver has been executed; and

3. Adequate instrumentation (the right kind of sensors with necessary
accuracy) and recording equipment with which to collect the flight
data.

This study is concerned with this last point, namely, the establishment
of what constitutes instrumentation accuracy to enable the collection
of flight data which is of adequate quality for identifving the aircraft

parameters to the accuracy desired.

In general, flight instrumentation is not specified today for the direct
intention of identifying stability and control derivatives. Rather, its
intended purpose is for checking aircraft handling qualities and general
measures of performance. If instrumentation specification is made, it is
typically based on what is known to be available. Part of the reason for
this status is that estimating stability derivatives from flight test data
has only been a secondary activity of companies building aircraft. If
a problem arises in the handling qualitieé, the manufacturer may attempt
to determine the derivatives responsible for the undesirable characteristic
as an aid to the best design fix; however, generally no full identification
program is undertaken. Flight simulators are built using wind tunnel
estimates of stability derivatives, and only corrections for gross dis-

crepancies are made.

There have been two notable exceptions(2’3>to the lack of attention
given to specifying instrumentation for the direct purpose of extracting
stability and control derivatives from flight test data. The Technological

University at Delft, the Netherlands(z) has developed instrumentation



systems with digital data acquisition, precision temperature controlled
electronics for uniform instrument dynamics, and inertial instruments

in a temperature controlled housing. However, data of individual instrument
contributions to identification errors have not been collected, nor have

the individual error effects on particular stability derivatives been
determined.

(3

LTV Aerospace Corporation has studied instrument error effects on
VTOL parameter identification accuracy. The LTV work involved repeated
simulation of the identification process and included random noise error
sources. A least-squares identification algorithm was used. The large
parameter estimate errors which are characteristic of least-squares methods
in the presence of random measurement noise were avoided by including
"pre-filters" in the data processing procedure. These analog pre-filters
were implemented on the aircraft to prevent aliasing in the sampling
process of digital data acquisition. No individual parameter sensitivities
to particular efror sources were reported in their work, so that instrument
tradeoff judgements couldn't be made. Rather, one instrument set and its

accuracy level were defined which met the requirements of a particular

VIOL testing program.
The purpose of this present study has been threefold:

1. The development of techniques, algorithms, and a computer program
with which to assess the uncertainty due to instrumentation errors
in the accuracy of the aircraft parameters identified from flight

test data;

2. The application of these techniques to examine the variation of
parameters obtained from typical flight tests with typical instru-

mentation errors; and



3. The determination of the general effects of instrumentation
quality variations, the type of instruments used, and other
quantities governing the data collection and identification

process on the identified parameter accuracy.

This study is a first step in the overall task of specifying and
providing adequate flight instrumentation for parameter identification.
The results determine important factors which must be considered and
procedures which should be followed to insure the measurement system

is sufficient.



II

DEVELOPMENT OF ERROR ANALYSIS TECHNIQUES

Techniques are developed in this section to determine quantitatively
the parameter variations which would result from using an output error
identification algorithm in the presence of unmodeled instrument errors.
It is assumed that the identification algorithm is convergent and that it
tends to minimize a quadratic function of the difference between actual
and modeled aircraft trajectory measurements. The modified Newton-Raphson
identification algorithm is specifically used. It is further assumed that
a single application of this algorithm can determine the major portion of
the variation in the identified parameter value due to the instrumentation

errors.

2.1 Modified Newton-Raphson Parameter Identification Process

(4)

The modified Newton-Raphson algorithm is essentially one of several
output error identification methods which are used. This basic identification
process is illustrated in Fig. 1. " The algorithm's objective is to choose
parameters 5 of a mathematical model of the aircraft so that the difference
between the output measurements of the model and the actual aircraft are
minimized. With no measurement errors, external disturbances, or model
structure inaccuracies, the output errors are minimized when the model
parameters equal those of the aircraft. Output error identificatiom

methods have the following characteristics:

1. They require good initial estimates of the aircraft states and

the parameters;

2. They give unbiased estimates in the presence of zero mean white

measurement noise;

3. They can be used for identifying the parameters of aircraft with

both linear and non-linear equations of motion; and

4. They do not work well in the presence of random disturbances to

the dynamics (process noise).
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In this study, the aircraft equations of motion as perturbed
from the nominal flight path are assumed to be linear with constant

coefficients, and of the form

x = F(p)x + G(plu ; x(0) = X (2.1)
where
A
X = aircraft state vector
u é control input vector
F(p) = system dynamics matrix containing some of the
unknown parameters p
G(p) = control distribution matrix containing the other

unknown parameters

The identification process identifies the parameters of F and G.

The output y of this system consists of measurements of the elements

of x and x. It is modeled as a sampled process bv the equation
y; = H(p)xg + D(plu; + w, (2.2)

where H and D are other constant-coefficient matrices also containing
elements of p. The vector Wy is contaminating noise. The subscript i
indicates that the output is sampled at time i and processed by a

digital computer.

The modeled equations of aircraft motion are of the same order

and form as Eqs. (2.1) and (2.2), and they are represented by

XR=F(@E)X +G{P)u ; =R(O) = ﬁo (2.3)

Here, F(P) and G(P) are formed by using the estimated parameters f. The

simulated output equation is

§; = H(B) x + D(P)u | (2.4)



If P equals p and ﬁo = X the only difference between Vi and ?i
is due to the measurement noise W In the Newton-Raphson identi-
fication scheme, it is assumed that v, is a sequence of zero mean white

noise vectors with the covariance matrix

T, _
E {wi wj} = Réij (2.5)
Furthermore, it is assumed that the elements of w, are independent so
that R is a diagonal matrix.
The Newton-Raphson identification technique chooses parameters p
which minimize the performance index or cost function
n
R 7 AR A (2.6)
i i i i ’
i=1
where n is the number of points collected in the measurement sequence.
This is done by iteratively applying the equation
- *
323|71 5 5T
A I 0 J (2.7)
Prr1 = Px ap2| dp .
The first partial of J with respect to p is, from Eq. (2.6)
n
aJ A T -1 aA
3 = -22 (Yi - yi) R Yy (2.8)
i=1 op
The second partial is
$.T oy 25
0% Y [ GNP 1 (2.9)
pZ ~ 2 ap R op i i op? )
i=1

*The notation 3( ) refers to taking the partial with respect to the

dp
estimated parameter f.




This is often approximated by

. ,
27 = Z < ayi> T -1 89,
ap {=1

3p op

Equations (2.8) and (2.10) are substituted into Eq. (2.7) to yield

; 287\ T 1oy < /09, \ T -1
Pry1 = P 4 Z ( yi) Ry Z( yi) R (v;-9,)

ap ap

Zquation (2.11) is the "modified" Newton-Raphson optimization
technique. It is applied repeatedly to update p until

Eq. (2.8) approaches a zero value.

The variance of the estimated parameter vector due tn noiae

T _ 2 -1
E { Sp dp }Noise - [—iiﬁ%]

p

is

where

P- P

Equation (2.12) is obtained by assuming that the errors due
to w, are small so that J is a quadratic surface in the

vicinity of § and p. Then, one can write

§p = - 325 |7t ( 3J )T
ap2 ap

(2.10)

(2.11)

(2.12)

(2.13)



where yi - ?i is W, and Yy is generated using the correct

parameter p. Thus, from Eqs. (2.12) and (2.13),

E {op é6p'} = E [ 32 ]‘l (§g> T o [gfg.]'l (2.14)

2 d p 2
3p P P 3p
Because [ BZJ ] has no noise dependence, this becomes
ap2
Efop opt= [ 2% | & ( 22.)T ag ([a%r | (2.15)
ap2 op 3p ap2

The inner term is expanded to yield

n n
E)far\ T (ag\l - 2(?3’_1)T ORI | T 7 | QP
ap 3p i=1\3p iflj=1 373 ap

Because the measurement noise is assumed to be white,
E{0, -9) &, -9)T}= RS
i i j j S & |

The double summation reduces to a single summation, and the

expectation is replaced by R yielding

o
B)(as) " (as\l= Y [(¥1)T glgrl oy (2.17)
ap p i=1 [ \9p ap

2
which, is exactly equal to %S% from Eq. (2.10). By

substituting this result in Eq. (2.15), the desired relation
{Eg. (2.12)) is established.
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2.2 Linearized Ajrcraft Equations of Motion and the Measurements

It is assumed that the aircraft begins a maneuver from a
quasi-steady flight condition with a constant airspeed V,
angle-of-attack a,, and pitch angle 6 . The roll angle
¢, yaw angle Y, sideslip angle B, and the attitude rates
P, 9, and r are all assumed to be initially zero. The

equations of motion of small perturbations of the aircraft

in the longitudinal plane are (6,7)
Ad 0 1 0 0 X 0
Aq A M
? i o . Mq Mw Mu qa i, Se [ Ade]
Aw -g sin 6, /K V cos o,/K Zw Zu Aw Z§e -
_%3— L:g cos GO/K -V sin o /K Xw X%d Lég_ _9 _
Here (2.18)

T A
X' = |A8 Aq Aw Au

and consists of perturbations in pitch, pitch rate, the normal
component of relative velocity, and the longitudinal component
of relative velocity. The control Ade is the deflection of
the elevator surface about the trim position. The constant

K is the conversion from radians to degrees.

If only the short-period motion is to be studied, the equations

Ad 0 1 o ||ae 0
AQ | = 0 Mq Mwilpag | + | MSe ASe
W -g sin BO/K V cos ao/K Zw | { Aw Z8e
are used. (2.19)

§> 11



In Eq. (2.18), the unknown parameters -to be identified consist

of

T A
P = [Mg Mv Mu MSe Zw Zu Zée Xw Xu |

In Eq. (2.19), this reduces to

pl = [Mq M¢ Mée Zw Z8é]

The lateral equations are in the form

1] 1

Cx=Fx+Gu

where C is a matrix which accounts for the cross-product of

inertia term Ixz. The state

X = [AB Ap Ar A¢]

consists of perturbations in the angle-of-gideslip, roll fate,

yaw rate, and roll angle. Then C has the form

(1 o 0 0|
A 0 1 Ixz/Ixx 0
¢= 0 Ixz/Izz 1 0
0 0 0 0

. - ) - ]
By .letting F ='C 1F' and G =C lG , Eq. (2.22) can be modified

to the more standard form

-— T -
= clex+clc u=rx+ Gu

e

12
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(2.21)

(2.22)

(2.23)

(2.24)



or in full form,

Aé YB Sina0 -cos a8 coseo/ AB Yéa Yér 1

ap | _ |ue* 1px Lr* 0 bp | 4 |Léa* Lér* |[asa

b NB* Np* Nr* 0 br Néa* Nor* .[Adr

A¢ 0 1 tan %) 0 Ad | C 0 2.25)

The starred (*) quantities are modified from their normal values
due to C_1 in Eq. (2.24). The control deflections A8a’ and Aér
are those of the ailerons and rudder, respectively. In

Eq. (2.25), the unknown parameters are

A
pT = [YB Y8a Y8r LB* Lp* Lr* LSa* LSr* NB* Np* Nr* NSok Nar*] (2.26)

The seven instruments which are assumed to be available for
longitudinal measurements are: -
1. pitch attitude gyro (8)
. pitch rate gyro (q)
.. angle-of-attack vane (a)
longitudinal pitot tube or air speed indicator (u)
. longitudinal accelerometer (nx)

normal accelerometer (nz)

N o LW N

pitch angular accelerometer (é)

For the short period equations, the pitot tube and longitudinal

accelerometer are omitted.

The lateral instruments are assumed to be
1. angle-of-sideslip vane (B)

2. roll rate gyro (p)

3. yaw rate gyro (r)

4, roll attitude gyro (¢)

13



5. 1lateral accelerometer (qy )

6. roll angular accelerometer (p)

7. yaw angular accelerometer (r)

The relation between the instrument measurements and the equations

of motion are obvious except for the accelerations, which are:

An_ = 1
X g

An_ = 1 (AG
y g

An . (A&
2 g

where w o=

o

u —1

.o I\J

Av =

A 2

+ qur - woAp)-cos 60 Ad

(Au + w Aq) + cos 8 A®

quq) + sin 60 AB

sin o

o}

cos o

. o}
AB
A

(2.27)

Making the substitutions and fitting the longitudinal measure-

ments into the form of Eq. (2.4) yields (for linear accelerations

measured in g's)

r—

AB 1
m
Aqm 0
Aam 0
Au =] 0
An 0
xm
An 0
zm
_éqm-_ _?

0 0 0
1 0 0
K cos o K sin o

: -

0 0 1

0 X Xu
.8

0 Zw Zu
g g

Mq Mw Mu
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Aq

Aw

|_Au_|

-1

ZSe

MSe

[Aée]
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The lateral measurements are

AB ] 1 0 0 O_T 0 0
m .
Ap 0 1 0 0 0 0
m p—
A8 ]
Arm 0 0 1 0 0 0
Ap (2.29)
a¢ | _| O 0 0 1 + 0 0 ASa
Ar
Anym VYg O 0 0 Y8a YSr ASr
gk ) gk gk
Apm LR* Lp* Lr* 0 Léda*  Lér*
Ar NB*  Np* Nr* O NSa*  N&r=*
n : _ ‘ o i

Equations (2.28) and (2.29) assume perfect measurements of

the aircraft state x and the control input u.

2.3 Effect of Measurement Errors on the Identification Process.

Often, no other measurement errors except for the white noise
indicated earlier are éésumed to be present in the flight data
used for identifying aircraft derivatives. Sometimes biases are
assumed to affect the measurements and these terms are identified
along with the equation parameters and state initial conditions.
However, there are many other types of errors which do affect
the estimation accuracy as will be seen. In this discussion, thé
emphasis is placed on those error sources whose effect can be

determined by linear analysis.
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2.3.1 General Instrument Error Models

First, consider the measurement of the aircraft state.
For constant value of these outputs the actual indicated

readings would be of the form

where
1+ e11 e12 ceen
e .
T = 21 1+ e22 :
e 00 l + e77
- p—

The diagonal terms in the T matrix represent scaling errors
while offdiagonal terms represent cross-coupling errors. The

vector B represents the bias errors.

The measurements are also affected by the dynamic character-
istics of the instruments and the recording equipment. The slowest
instrument/smoothing filter combination encountered & has a
natural frequency of 1 cps which is about a factor of 2
higher than the aircraft dynamics. Therefore, the important
aspects of the dynamic errors are the phase lag and amplitude
attenuation of the instruments at frequencies below their
natural frequencies. These characteristics can be approximately
simulated by a first order lag regardless of the order of
the instrument dynamics. The matrix equation representing this
is

16
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yp = Fyp Y EYr s ¥, (0) =y (0)
where
v, = "lagged" measurement
Fm = diagonal matrix of elements representing one over

the instruments’ time constants.
The addition of the random noise for each instrument

yields the final measurement equation

. = .+ \

y1 yL1 Vi

where v is the output measurement vector with all errors

sampled at time i, and W is the random output noise vector with

: T, A
E{w.} =0; E {w,w,} =RS,,
i i7j ij
In this study, it is always assumed that the random noise is
correctly modeled; that is, the covariance matrix R is known

and is correctly used in the cost function J of Eq. (2.6).

The other source of measurement error is in the recording
of the control input u by either surface deflection potentio-
meter or servo measurements. These control measurements are
also subject to scale factor errors and biases which can

be represented by the equation

The measurement of u_ is also subject to dynamic effects

I
which are again approximated as first order lags by the

equation

17
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uy = -F, up + F, ug ; uL(O) = uI(O) (2.35)
Here,

u = "lagged" control

FC # diagonal matrix of one over the time constants of

the control measurements.

The actual recorded control input is sampled and is subject

to noise. It is represented by the equation

- (2.36)
Ui Uy T Ve

where

ug = control measurement vector with errors sampled at time i
. A
w ., = random control noise vector; E {w .} = 0; E {w .w .} R S,
ci ci ci'cj c 1ij

The overall identification process flow diagram changes from
that depicted in Fig. 1 to that depicted in Fig. 2. 1In
the linear analysis which follows, the control measurement
noise LA is ignored. This noise acts as a random disturbance
to the system dynamics (process noise) and cannot be analyzed

with linear methods.

2.3.2 Particular Errors Studied

Before proceeding to the analysis, a description is first
presented of some of the error sources which can be studied

by the preceding equations. The diagonal elements of T, Tc’ F

and Fc have been explained. B and Bc are bias vectors.

18



6T

Control . Simulated .
Measurement Slmulate? Flight Measurement Identlfl?atlon
Dynamics Dynamics Process Algorithm

-F u
c

L

Flight Dynamics

Output Measurement
Dynamics

Measurements

yr= H(p)x + D(p)u

F(p)x + G(p)u

4T S

+ X =FP)X + G(P)upg . = H(H)% 3 p=9+6p
Fou; Umi y; = H(P)%, + G(p)umi

Noise

FIGURE 2. EFFECT OF MEASUREMENT ERRORS ON THE IDENTIFICATION PROCESS



Some of the specific errors which are included in the off-
diagonal terms of the T matrix include:

1) o and B boom corrections

2) accelerometer location corrections

3) misalignments (accelerometers & gyros)

(8)

A simplified o boom correction equation is
- . _X
a; = o v;g A

where V is aircraft total velocity and chg is the angle-~of-
attack vane distance from the aircraft center-of-gravity (c.g.).
If both vane location and c.g. location are precisely known and
accounted for, there is no error. However, if the actual value
of chg is different from that used in the correction, or if no
correction is made, an error in the measurement results. The
error in chg is thus divided into two parts, the error in vane
location (svx) and the error in c.g. location (ach). The
separation of the contributions is made because vane location
uncertainty only affects the o correction, while c.g. location
uncertainties affect accelerometer corrections as well. If all
seven longitudinal instruments are being used as in Eq. (2.28),
introducing the error Eq. (2.37) into the T matrix Eq. (2.30)
yvields:

e32 = - va + €xcg
v

Similar capability is provided for the B vane correction errors.
Other errors which can affect o and B readings are due to

upwash and boom bending.
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Linear accelerometer corrections are necessary when these

instruments are not mounted at the aircraft center-of-gravity.

If E{ y z ] are the components of the accelerometer position
cgicg cg
from the c.g. in aircraft fixed coordinates, then the corrections
8
should be (8)
n. = @+ddx_+ (& -py._ - (q+pD)z
xC cg cg cg
n = -(r + pQ)x__ + (p2 + rz)y + (p -~ qr)z
yc cg cg cg
n = @-rpx_ - (p+ady _ + @+ q)
2c q p xcg p q ch P q ch

These equations can be decoupled into lateral and longitudinal
parts. If the nonlinear terms are neglected, (valid for p, q, r,
(expressed in radians/second) which are << 1) , the corrections to

the longitudinal instruments are

I\’ L]
n = -
q z.

- g

zc 4 xcg

e

If the value of xcg and zCg are in error because of the
uncertainty in the c.g. position or the c.g. offset of the

accelerometers is neglected, then the error terms

e (e +€ng) /Kg

57 az
67 (eax +€ch) /Kg

appear in the T matrix. In Eq. (2.41), the term
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£ = errors in the accelerometer location when
ax, az
a correction is made.
= distance from c.g. to the accelerometer
when a correction is not made.
£ errors in the knowledge of the c.g. location
cgx, cgz = g g

Similarly, the lateral accelerometer has the two errors

esp = - (eaz + Ecgz) /Kg _ (2.42)

= + K
€57 (Eax ech) /Kg
Other elements in the T matrix are due to mounting misalignments
of the gyros and accelerometers. In the longitudinal equations,

the terms

e -y /K (2.43)

56 nx

e65 = Ynz/K

appear, where Yox and Y,, are the small misalignment angles.

In the lateral equations, the T matrix contains the terms

®23 T 7K (2.44)
ey, = Yr/K
ey = -Yﬁ/K
®6 = Yi/K
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which are similarly defined.

Effects of the above mentioned off-diagonal terms of the T
matrices of the longitudinal and lateral measurements are
presented in Section 3. Other errors which could be contained
in T include angular accelerometer sensitivity to linear

acceleration and rate gyro mass unbalance.

Another error source is introduced into the measurements shown
in Fig. 2 due to the sampling and quantization. This is
illustrated in Fig. 3a. The errors introduced by this proceés
can be duplicated by the addition of a noise source to the
sampled signal as illustrated in Fig. 3 b. Given the quantization
level Q and the statistics of the sampled signal z (k), Widrow 10)

has developed expressions for the statistics of n(k).

For all but very course quantization, the distribution of n(k)

is uniform between ~Q/2 and Q/2, and

2

e
[§¥)

: 2
E {n(k)} = 0 E {n"(k)} = Q°/12
The error in this approximation is computed based on the relative
magnitudes of Q and the standard deviation of z(k ), (é 02),where
z{k) is Gaussian. When Q@ > Gz(an extremely course quantization
level for any airplane measurement system), the error in assuming

that

E {n(k)} = Q%/12

0

is 2.6 x 10_l Q2, which is very small.

(2.45)

(2.46)



z(t) z(k)

a. SAMPLING AND QUANTIZATION

z(t) /‘ z” (k)

n(k)

b. EQUIVALENT MODEL

FIGURE 3. MODEL OF SAMPLING AND QUANTIZATION EFFECTS ON MEASUREMENT SIGNALS.
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Perhzps of more interest is the whiteness of the noise sequence
n(k), (i.e., is E {n(k) n(k+l)} = 07?). Widrow also gave an

expression for this quantity which is

2 2,2
E {n(k) n(k+l)} = Oi e (1-p) b 2 /Q

where

E {z(k) z(k+1)}

2
o
z

For frequent sampling, z(k) will be highly correlated with
2(F1), f.e. 0 ~ 1 so that 1 - p is small (<< 1).

However, most aircraft measurement systems will have a fine
quantization level, where OZ/Q is large (>> 1). The net result

is that it is not clear whether n is white or not.

As an example, assume that typical numbers for these quantities

are

o v .99
UZ/Q = 10

These yield

2,2 .
—(1—p)4n2 c, /Q v =40

e e
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which is essentially zero. The assumption that the guantization
adds white noise to the sampled measurements seems reasonable.
Thus, for the preceding example no special modeling procedure needs

to be added to include the effect of quantization.

In summary, there are three types of errors which affect
the accuracy of instrument measurement of the aircraft motion
- random noise, random constants such as biases and scale
factor errors, and mean errors. Mean errors are those terms
which are known to produce measurement errors but are neglected
because they are assumed to have negligible effects. (like
accelerometer offset from the c.g.) Instrument lags can be
thought of as mean errors with random variations about the

nominal mean value.

2.4 Ensemble Analysis of Measurement Error Effects

As explained in Section 2.1, the modified Newton-~Raphson
identification scheme minimizes the cost function J of Eq.(2.6) by
repeated application of Eq.(2.11). Convergence on the minimum is
achieved when %%— - 0. In this study, it is assumed that the
true value of p is known. It is further assumed that the instrument-—
ation errors cause the minimum point on the cost function surface
J to shift a small amount from the true p. If the small error
assumption is correct, only one application of Eq. (2.6) (with 5
set to p) can determine the shift due to the measurement error on
the estimate of p. This is the key assumption of the linear analysis

which is used in this study. The resulting perturbation to the parameter

vector is:
o o N e (2.49)
P = pPp -p=- 3 e
ap P
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where

perturbed parameter estimate due to measurement
errors

true value of the parameter.

o]
]

From Eq. (2.11), this can be written as

/

a§iT -1 ay.} -1 = ayiT S

n
_ R i y.-9.)
§p =+ § %55- 3;— E TP i’

i=1 i=1

The y; are the sampled output measurements taken from the aircraft
(Eqs. (2.1), (2.2) (2.30) - (2.33)) and the ?i are the simulated
output values (Egqs. (2.3), (2.4)) obtained using the measured
control input. The sensitivity term Ezi is computed by the
identification algorithm about the 1aggst estimates of p.

Again, for the linear error analysis, this is the correct value of p.

To compute ayi in Eq. (2.50) requires integration of
ap

X =F&+Gu; %(0) =%
This assumes perfect measurement of the control input u.
Also, the sensitivities of the states to parameter changes are

found by integrating

Q-IQ-
- T
o
Q)!QJ.
R
o
S
]
txj
———
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where pp is the parameter vector containing the elements
presented in Eqs. (2.19), (2.20) or (2.26). If state
initial conditions are also estimated, the identification

process integrates

a- (a§ ) (aﬁ ) R
Tl JFEF s 3 a= (0) =1
de \9ppc 9P1c 9P1c

. (2.53)
Then, from Eq. (2.4), the output sensitivity matrix for the
parameters pP is
%Z=H—g%+%}—1—§+g%u (2.54)
pP P pP p
For the initial conditions, this becomes
-g—!- = H _g_}.(_
P1cC P1c (2.55)
If output measurement biases are also estimated, the sensitivities
oy
5. = 1 (2.56)
b
must also be included. The total sensitivity used in Eq. (2.50)
is then
3y, 0¥ . Y $
ioa P ¥y 8y, (2.57)
ép op 3p P
P IC Py
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Output measurement errors affect the value of y, in Eq.
(2.50). From Eqs. (2.30) - (2.33), the méasurement equations

can be written as
o= o+ + + 2.58
Iy Fy, * F (T[Hx + Du] + B) ( )
By neglecting the measurement noise temporarily, the output

Yi is the sampled value of Vi The sensitivity of the

error 6p in Eq. (2.50) to an error source e is

2.1-1 39, ay,
d _197J i -1 i
T (6p) = {-—72} E 3 R Te (2.59)

This requires computation of the sensitivity matrix 3e

The sensitivity of vy to a bias element of B is

approximately

dy .

i _2B (2.6

a_e - 8'.e O)
For an element in T, this is

dy

i _oT

5o ~he (Hx*Du (2.61)
For an unestimated initial conditidn treated as an error source,
the sensitivity of i is

Ayi _ 8xi (2.62)

2:e de
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3. ; ;
where == comes from integrating

e
d (8x ) _ ox | ox
dt (ae) Fag 5 3z (0 = I (2.63)

For an unknown time constant in the matrix Fm’ the sensitivity

must be determined by integrating

9y 8y

d (BYL) "
:i_t_ a—e— = 56_ - yL + (HX + Du) - Fma—e' ;d'e-—(0)= 0 (2.64)
The results of Eqs. (2.60) - (2.64) are combined into a general
vector 9y for each error e which affects the output
measuremggtS.
The sensitivity of parameter estimates due to control input
measurements errors is of the form
-1 n A T 3",
3 12, 39, = 1 Vi (2.65)
Lem . []TS B e
de 5 P
p 1=l

This requires knowing the sensitivity of the simulated output

?i to control measurement errors e.
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For control measufement.biases, the sensitivity of the control

input is
ou | BBC
mi _
de e (2.66)

For scale factor errors, this is

&lmi BTC
_— = = 2.67
3 oo ( )

The effect on the states is found by integrating

)i aumi
) = F—=+ ¢ —— . (2.68)

from Eqs. (2.3). The resulting effect on the simulated output

¢, 1is
7

3§i aﬁl au'mi
e = Ry + D | (2.69)

Evaluation of the sensitivity to control measurement lags

requires integrating

A A au A
d ax _ ox L . 9% =
i (3‘5) " P O e (O =0 (2.70)

du, du oF du
d L L, _¢cf[_ .. . __L _
dt (—__—) =F5e *t e [ upt u} > Qe © =0 (2.71)
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The resulting output sensitivity is again found from Eq. (2.69).

For random constant measurement errors, e the total

R’
covariance of the individual parameters being identified is

T
T _ T 3 (Sp) Ty 3 (Sp)
E {spp } total = F {epdp }noise * 3 ep E {eReR} dep

T . .
where E {eReR} is the covariance matrix of the random measurement

errors not including measurement noise. The sensitivities

a (8
—3122) come from Egs. (2.59) and (2.65). The covariance due

R
to noise comes from Eq. (2.12). For mean errors, ey , the

expected error in the parameter is

The above error analysis is referred to here as the ensemble

error analysis. It is valid for small errors which affect

the measurements linearly.

2.5. Simulated Data Analysis of Measurement Error Effects

Sometimes it is useful to determine the effects of instrument
errors by actually simulating the identification process and the
measurement data contaminated by errors. If the errors are large
or if nonlinear errors are to be studied, the one step assumptions
and linearization which were used in the ensemble analysis method
may not be valid. Therefore, the simulated data analysis method

complements the ensemble analysis.
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2.5.1. Linear Analysis

There are two common ways in which error analysis is conducted
by simulation. The first simulates the effect of each random error
individually, assuming they are independent, and uses the error's
standard deviation for the magnitude used in the simulation. The
results of simulating each of the random errors are root-sum-squared
to find the approximate total error effect. For investigating the
effect of measurement errors on parameter estimation accuracy, this
method is not limited to a single-step application. For small
errors which linegrly affect the output measurements, the results

of this simulated data analysis match those of the ensemble analysis.

The simulated data analysis method is related to the ensemble
analysis in that the basic equation utilized is Eq. (2.50). The

matrix 3 J is unchanged for any one step. What is different
3 X
ap 3y, 39,

is that rather than computing the sensitivities —= or 527-’

e
the analysis computes the residual (yi - 91) in g:l
P

For output measurement biases, the residual is simply

-9 =y - A, = B
(v; =% 1R A1
where Y14 is the ith sample of Y1 defined by Equation (2.30).

For transformation errors due to the T matrix,

—-— 5 = ~YA — Q | = —-— 2
(yi yi) T(‘..xi + Dui) (H}\i + Dui) (T - 1) (Hxi + Dui)
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If initial conditions are unestimated, both x and % in

Eqs. (2.1) and (2.3) are integrated, and

- $) = -% ) =H(x -%)
(y],L yi) (yTi yi) (i :

For biases to the control measurements, Egs. (2.3) and

(2.4) are reevaluated using

u ., =u, + 3B
ml 1 o4

For scale factor errors, the control

is used.

For random errors, the total parameter covariance is

r
T T
= +
E {6pSp} Enoise 25 (Gpjépj )
j=1
where r is the number of random error sources. E_ . is the
noise

covariance of the parameter estimate errors due to the output

noise W, . This again comes from Eq. (2.12).
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Mean errors include some elements in the T matrix and
all elements in Fm and FC (Eqs. (2.32) and (2.35). 1If

there are no lag errors, the evaluation is just like Eq. (2.75).

If there are control measurement lag errors, Eq. (2.35) needs

to be evaluated with ur = u. If there are output lags, Eq. (2.32)

needs evaluation. This requires reintegration of Eq. (2.3)

and Eq. (2.35) in the form
S o= - 2.80
. Fm v + Fm ([Hx + Du]) ( )

Equations (2.51) - (2.57) need to be reevaluated in case of

control lags. The total effect due to lags on Eq. (2.50) is
- = - (Hx 2.81
' ?i Yii (Hxi + Dumi) (2.81)

For mean errors, the total effect on the parameter values

is found from

E {sp} = z (8p) (2.82)

where m is the number of mean error sources, and Gpj are

the mean errors due to each source computed from Eq. (2.50).
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2.5.2 Nonlinear Analysis

For large or non-linear measurement errors and the presence
of process noise, a Monte Carlo simulated data analysis technique
should be used. In this method, several different data sequences
are simulated and used sequentially in the identification

process.

The random errors contained in B, part of T, BC,TC, and
x, are generated at the beginning of each simulation using
the errors' standard deviations and a random number generator.
These errors are held constant during each single Monte Carlo
run, but are changed from run to run. The random noise LA and
w,y are regenerated at each sample point during each run. Each
of the mean errors in T plus elements of Fm and FC are set
equal to the constant mean values and are not changed during

any of the runms.

For output measurement errors in T, B and vy only, the
residual (yi - ?i) in Eq. (2.50) is computed by
vy - ?i = T(Hxi + Dui) + B + w, - (Hﬁi + Dui)

For random initial conditions, Eq. (2.1) must be integrated

each time and Eq. (2.83) gets changed to

vy - y; = T(Hxi + Dui) + B + w, - (Hxi + Dui)
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For non-lag control measurement errors, Eqs. (2.34) and (2.36)

get combined so that at each sample point

u . =Tu+B +w
mi c c ci

where Vo is randomly generated each time point. Because of
this change, Eqs. (2.51) - (2.53) require integration each
pass through, and Eqs. (2.54) - (2.57) require re-evaluation

each pass through. With these changes, Eq. (2.85) becomes

ol

Yi - ¥y = T(Hx, +Du;) + B+ v, - (H)'Ei + Du )

The error Ap; in the parameter vector obtained from each run

is saved. For m Monte Carlo runs, the mean error in p is

m
B oA EWp) -2 > e,
=1

The standard deviation about this mean is

B {opop"} = 1 Z

m
oy — T
(bp, - Ap) (lp, - Ap)
Pt i i
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2.6. Implementation of the Analysis Techniques

The ensemble analysis and simulated data analyses techniques
described in Sections 2.4 and 2.5 were coded into a digital
computer program. This program enables the assessment of
uncertainty (due to instrumentation errors) in the accuracy
of the aircraft parameters identified from flight test data.

A summary of the equations contained within this computer program
is presented in the Appendix of this report. The longitudinal
equations including the short period mode and the lateral equations

are both contained in the program.

This program has been exercised using stability and control
derivatives from the DC-8, the F-4C, the Cessna 172, and the
HL-10 1lifting body. In all cases, an input sequence is first
found such that the recorded output has an appropriate amount

of information to allow the identification process to take place.

In the next section of this report, the results of exercising
the ensemble analysis option of the program using the F-4C as
an example aircraft are presented. In addition to output
measurement noise, the measurement errors which are studied

include output biases and elements in the T matrix.
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III

STUDY OF THE EFFECT OF MEASUREMENT ERRORS ON PARAMETER IDENTIFICATION ACCURACY

In this section, the results of a study using the previously described
error analysis program that determines the effects of measurement errors on
parameter identification accuracy are presented. Both longitudinal and
lateral motion of an F-4C aircraft with typical control surface deflections
are studied. A range of measurement and recording errors, representing the

current state of flight instrumentation is investigated.

3.1 Current Flight Instrumentation Accuracy

The general measurement accuracy range of instruments for sensing air-
craft longitudinal state outputs which is typical of current flight tests is
presented in Table 1. A similar table representing lateral instrumentation
accuracy is presented later as Table 10. The error sources contained in
these tables are a result of examining product literature and the specifications
used by flight testing organizations. Although cases were found where the
standard deviations of instrument errors exceeded the minimum and maximum table

values, these values are judged to be reasonable ones for this study.

The '"max" values for noise, bias, and scale factor error shown in Table 1
are basically 0.5% of the highest dynamic range typically used in flight testing.
Most instruments are considerably better than this; however, analog data acquisi-
tion systems have an average accuracy of about 0.5%, so it was selected as the
worst case. Noise and bias are related because data trace values taken before
a maneuVer is executed are used as the null points. The ability to determine

these zero values is a direct function of both the noise and bias present.

For a digital data acquisition system, the 0.5% error is too large. Common
error values in the measurements due to a 10-bit data acquisition system will be
about 0.05% and correspondingly lower for more bits. With this recording accuracy,

the instrument errors start replacing the data acquisition errors as the important
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Table 1

LONGITUDINAL INSTRUMENT ERRORS
STANDARD DEVIATIONS

oY

Full Scale Random Noise Random Biases Random Scale Factors
Instrument Units Deflection® { Minimum | Base | Maximum | Minimum | Base | Maximum | Minimum | Base | Maximum
Pitch attitude gyro deg 30-90 .015 .15 .45 .015 .15 .45 .057% .57 5%
Pitch rate gyro deg/sec 30-60 .015 .10 .30 .015 .10 .30 .05% 5% .5%
Angle-of-attack vane deg 20 .01 .10 .10 .010 .10 .10 .05% .5% .57
Pitot tube ft/sec 1000 .50 1.00 2.50 .50 1.00 2.50 .05% .5% .5%
Forward accelerometer | g's 1 .0005 .005 .005 .0005 .005 .005 .057% 5% 5%
Vertical accelerometer | g's 2.5 .0025 .005 .025 .0025 .005 .025 .05% 5% .5%
Pitch accelerometer deg/sec2 30-60 .015 .10 .30 .015 .10 .30 .05% .5% 5%
BandWidth Standard
) _ o _ Deviation
Other Types of Instrument Errors Minimum | Base | Maximum Instrument Lags (sec'l) (%)
-Linear accelerometer misalignment (deg) .15 .60 .90 Gyros 150 5
Pitch angular acceleration sensitivity
to linear acceleration (deg/secZ-.g) .10 .60 Linear accelerometers 600 5
Pitch gyro mass unbalance (deg/sec-g) .025 .60 Angular accelerometers 180 10
Center-of-gravity uncertainty (ft) .25 .50 1.0 Tape recorder 6 5

*
When a range of deflection values is given, the lower number is associated with the minimum random errors. The larger

number is associated with the maximum random errors.




£

error sources. The '"min'" values presented in Table 1 are based on the

lower values of References 11-13. Manufacturers' guarantees were interpreted
as 20 values, although in no case was the data given with any statistical
information.

Neither the instrument manufacturers nor the flight test agencies compile
statistical data of instrument accuracies in the form required for this error
analysis. The validity of the range of accuracies available, such as those
presented in Table 1 must be questioned without supporting laboratory test

data.

As a means of having a reference set of instruments with which to conduct

the study, a 'baseline'" set of instrument accuracies was chosen within the

range of Table 1. This set of accuracies is listed in the 'base" columns, and is

assumed to represent values of a typical flight test program.

The effects of instrument lags, control surface deflection measurement
errors, angular accelerometer sensitivity to linear accelerations, and gyro
mass unbalance were not studied in this preliminary investigation. Other
unknown meaurement errors might exist because of voltage supply fluctuations,
temperature effects, aircraft body bending, and nonlinear errors. Additional
errors exist in comparing parameters obtained from wind tunnel and flight
tests because of the uncertainty in the aircraft inertia terms which can be

in error up to about 5% of actual values.(l4)

3.2 Model of the F-4C Aircraft

To conduct the study, the F-4C aircraft was chosen with a level flight
path and an air speed of 827 ft./sec. The linearized perturbation equations
about this condition, as represented by Eqs. (2.16) and (2.25) for longitudinal
and lateral motion, were utilized. The corresponding stability and control

derivatives of the F~4 are presented in Table 2.(15)
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Table 2

REFERENCE STABILITY AND CONTROL DERIVATIVE PARAMETERS FOR
THE F - 4C AIRCRAFT

Longitudinal Lateral Reference
Motion Motion Flight Path
Nominal Parameter | Nominal Nominal
Parameter Value Value Parameter Value
-1 -1
Mq -.719 sec YR -.157 sec \Y 827.ft/sed
° — °
Mo ~.591 /ft.sec | Yéa . |[.00338 sec o, 2.6
o - °
Mu -.0295 /ft.sec| Yér .0246 sec L 0, 2.6
MSe ~16.2 sec”? LB 115,98 sec 2
Zw -.762 sec_1 Lp -1.608 sec_l
Zu ~-.0617 sec-l Lr . 384 sec-1
2 -
ZSe ~1.24ft/deg.sec| LSa 10.92 sec 2
Xw .0273 sec-l Lér 2.54 sec-2
Xu .00701 sec T NB 6.563 sec 2
-1
Np - 0997 sec
~1
Nr -.343 sec
N .707 sec?
Sa -2
N6 - -3.902 sec l
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The longitudinal equations of motion have the characteristic equation

54 + 1.48833 + 9.091s2 + .05997s + .03284 =0 .1

Factoring this equation results in a short-period frequency of 3.0l rad/sec

with a damping ratio of 0.246. The phugoid frequency is 0.0190 rad/sec with
a damping ratio of 0.158.

The lateral equations of motion have the characteristic equation

4 3
s

+ 2.108s™ + 7.45852 + 12.86s + .1153 = 0 (3.2)

This produces a Dutch roll frequency of 2.63 rad/sec with a damping term
of 0.0519. The roll subsidence has a time constant of 0.548 sec. The spiral

convergence time constant is stable with a value of 111. sec.(16)

3.3 Effect of Longitudinal Measurement Errors’

The reference maneuver used to identify the F-4's longitudinal stability
and control derivative is shown in Fig. 4. The measurement data sequence
consisted of 300 points taken every 0.05 sec for a 15 sec. time span. The
elevator deflection consisted of a doublet of 2 50 followed by step inputs
of -0. 5 and 0.5 . Figure4 shows the resulting trajectories for pitch angle,
pitch rate, angle-of-attack, and longitudinal speed perturbations about the
reference flight path. This sequence was selected because it provides adequate

information for the identification process.

3.3.1 Basic Instrumentation Error Effects

In studying the effect of instrument errors, two different identification
cases wére used. In the first, it was assumed that only the stability and
control derivatives were identified, so that all bias errors affected the
total estimation uncertainty. In the second, it was assumed that-state initial
conditions and instrument biases were estimated so that their contributions
were essentially eliminated. In both cases, initial conditions were not used

as error sources.
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For the full longitudinal mode, the system equations are so structured
that the longitudinal speed perturbation's initial value appears to have almost
the same effect on the output equations as does a bias in the pitot tube or air
speed indicator. In other words, both of these parameters are not simultaneously
observable from a data sequence over a short time span. Thus, for the second
identification problem described above, the pitot tube bias is not identified,
and it enters an error source. Most of this error is identified as a forward

speed initial condition.

Table 3 presents the results of using the ensemble analysis program to
compute the standard deviations of the longitudinal parameters as identified
from the trajectory in Fig. 4. These results are for the baseline, minimum,
and maximum values of the random error sources listed in Table 1. The resulting
parameter deviations are those due to white noise only and those due to the
sum 6f white noise and the rest of the instrumentation errors assumed present.,
The important quantities that can be obtained from this table are the ratio of
parameter deviation to the nominal parameter value, the increase in the deviation
size due to error sources which aren't noise, and the effect that estimating

biases has on the total deviations.
From Table 3, the following conclusions can be made:

1. Addition of non-noise error sources has a substantial effect on the
standard deviation of the parameter estimate accuracy. As seen in
Table 3, the errors in accuracy of parameters Mu, Zu, Xw, and Xu
are increased by over an order of magnitude by the non-modeled
instrument errors. This is true for the minimum, baseline , and
maximum error values. For example, the deviation of Mu goes from
8.7% to 119.6% (.00257 to .0353) of the parameter value for the
baseline error set without biases being estimated. This growth
in the standard deviations is illustrated more distinctly in the bar
graph in Fig. 5. It must be pointed out that the largest errors

are in the parameters associated with the phugoid mode. This is
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Table 3

STANDARD DEVIATIONS OF PARAMETER ESTIMATES DUE TO INSTRUMENT ERRORS

LONGITUDINAL EQUATIONS OF MOTION

Baseline Errors Minimum Errors Maximum Errors
Biases Not Biases* Blases Not Biases* Biases Not Biases*

Estimated Estimated Estimated Estimated Estimated Estimated
Nominal#x Noise Total Noise Total Noise Total Noise Total Noise Total Noise Total
Parameter Value Only Errors Only Errors Only Errors Only Errors Only Errors Only Errors
Mq -.719 s-l .182-2* .704-2 .189-2 .683-2 | .420-3 «271-2 | .431-3 .265-2 .623-2 .162-1 1 ,649-2 .128-1
Mw -.591d/f*s | .359-3 | .130-2 | .455-3 <495-3 | .677-4 «125-3 | .789-4 .105-3 | .110-2 .187-2{ .132-2 .161-2
Mu -.0295d/f+s | .257-2 «353-1 | .442-2 .588-2 | .294-3 .409-2 | .522-3 .636-3 | .298-2 .413-1| .534-2 .627-2
Mée -16.2 s-z .106-1 .788-1 | .117-1 .778~1 | .166-2 .832-2 { .183-2 .783-2 | .306-1 .118 .346-1 .810-1
2w -~.762 s"1 .914-3 .790-2 [ .103-2 «717-2 | ,322-3 .285-2 | .339-3 .265-2 | .372-2 .184-1 ‘.407-2 «120-1
Zu -.0617 s-l .345-2 | .484-1 .617-2 «753-2 | .459-3 .633-2 | .800-3 .109-2 | .478-2 .669-1] .852-2 «971-2

Z6e -1.24f/d's2 .167-1 .150 .183-1 .144 .775-2 «734-1 | .795-2 .715-1 | .800-1 +365 .843-1 .297
Xw .0273 s-l .494-3 .675-2 | .769-3 .852-2 | .605-4 .222-2 | .777-4 .272-2 | .588-3 «121-1 1 .779-3 .140-1
Xu .00701 s—1 .478-3 +596-2 | ,116-2 «376-2 | .596-4 .885-3 | .121-3 .180-2 | .574-3 .818-2 1 .119-2 «727-2

* Biases of six instruments estimated.

** Dimensions are:

s-sec; d-deg; f-ft.

Pitot tube bias

# Deviations are in the form .182-2 which means .182 x 10-2

is not directly estimasted.
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because the phugoid period is 330 sec, so the 15 sec data span
doesn't have as much information content to obtain better accuracies

for the parameters which govern the phugoid motion.

2, The estimation of biases increases the parameter deviation due to
noise only, but generally reduces the total deviation of each para-
meter. For the baseline case, the deviations of Mw, Mu, and Zu are
reduced more than 60%. However, by estimating biases, the deviation
of Xw increases 26%,in the baseline case. This is because the sensiti-
vity of XW to the misalignment in the longitudinal accelerometer
increases when biases are estimated, and for Xw, this misalignment
is the dominant error source. This points out that it might be better
to structure the identification scheme so that other errors, such
as the accelerometer misalignments, are also estimated, in addition
to the biases.

3. The general effects of error sources other than noise, and the effects
of estimating instrument biases are the same for the minimum, baseline,
and maximum error values. Thus, the trends exhibited by the baseline

error magnitude study can be used as general results.,

From Eq.(2.75), the effect of any small random instrument error e on any

parameter's variance can be written as

E {6p%) +  E{sp?)

2
E{ép }tota noise

1 other

+(g—e@1’)> E {e?) (3.3 )
errors

Thus, to provide high quality parameter estimates, it is necessary to keep

tgederrors small or to keep the sensitivity of a parameter's deviation .
3£—21 to an error source small.

The sensitivities of the longitudinal parameter estimates to random and
mean instrument errors for the baseline case when biases aren't estimated are

presented in Table 4. Corresponding sensitivities of these parameters for the
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Table 4

LONGITUDINAL PARAMETER SENSITIVITY TO INSTRUMENT ERRORS
WHEN NO BIASES ARE ESTIMATED
Random Biases
Parameter by bq by by bnx bnz bg
Mq .249-02 .295-02 .622-02 .258-05 | .559-02 .674-01 .141-02
Mw -.321-02{ -.171-02 | -.103-01 | -.305-04 | -.294-01 | -.852-01 .886-04
Zw -.149-01 | ~.336-02 | -.121-02 .339-03 | -.151-00 .299-00 .277-03
Mu -.938-01| -.334~01 | -.298-00 .899-03 | -.966-00 | -.202+01 .787-03
Zu -.108+00 | -.359-01 } -.395-00 .103-03 | ~.129+01 | ~.415+01 .150-03
Xu -.413-03 .229-03 .828-02 | -.250-02 | -.967-00 .183-00 .228-04
- Xw .416-02 .131-02 .368-02 .375-02 .125+00 ; -.687-01 .955-05
MSe -.653-01 .529-02 | -.911-01 .410-02 | -.775-00 .758-00 .371-02
Z8e .138-00 .166-01 | ~.189-00 | -.564~02 .131+01 | -.628+01 .618-02
Random Scale Factors
Parameter ey Cq €q Cu €nx €nz €4
Mq .878-02 .190-01 | -.196-01 .201-02 | -.441-03 .610-00 .620-00
Mw -.121-01 .314-02 .812-02 | -.639-03 | -.223-03 | -.167-01 .184-01
Zw -.634-01 .363-01 .172-01 | -.930-02 | -.103-02 | -.722-00 .742-00
Mu -.382-00| -.481-02 .327-01 | -.344-01 | -.110-01 .509-00 .109+00
Zu -.445-00 | -.714-02 .434-01 | -.210-01 | -.153-01 .546-00 .101+00
Xu -.229-02 | -.315-03 | -.165-02 .632-01 .778-03 [ -.539-01 .578-02
Xw .172-01| -.527-03 | -.192-02 | -.588-01 .166-01 .376-01 .102-01
Mée -.313-00| -.586~-00 | -=.232-00 | -.633-01 | -.109-01 .285-00 .153+02
Z8e .619-00 .104+00 | -.795-01 .1224+00 .109-01 | -.224+01 .218-00
Random Misalignments and Center—of-Gravity
Position Errors
Parameter Ynx Ynz Ecgx - €cgz
Mq .309-03 | -.372-03 | -,103-01§ -.121-03
Mw .302-04 .605-05 .207-05 .700-04
Zw .124-03 .432-03 | '.103-01 .154-03
Mu .325~02 | -.462-03 .809-06 .160-02
Zu .465-02 | -.678-03 .458-03 .223-02
Xu .327-02 .463-04 .505-05 | -.505-03
Xw .882-02 | -.264-04 .252-04 { -.287-02
MSe .389-02 | -.,203-03 .229-03 .899-03
Z8e .209-02 .756-03 .284-00 | ~.242-02
Mean Errors—-Accelerometer Positions
and Angle-of-Attack Vane Position
Parameter Cax “az Cyx
Mq -.103-01 | -.121-03 .154-04
Mw .624-05 .700-04 | ~.417-05
Zw .103-01 .154-03 | -.294-05
Mu .144-03 .160-02 | -.143-03
Zu .648-03 .223-02 | -.189-03
Xu .687-06 | -.505-03 .436~05
Xw .224-04 | -.287-02 .276-05
Mde .675-04 .899-03 | .162-03
Z8e .284-00 | -.242-02 .115-03
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baseline case in which bilases are estimated are presented in Table 3. By
using Eq. (3.3) and the range of non-noise errors of Table 1, one can determine
which error sources have the major effect on the accuracy of each parameter

estimated. This was done, and the results are delineated in Table 6.

It is noted from Tables 4, 5, and 6 that adding the capability of estimating
initial conditions and biases tends to restructure the values of the elements in
the sensitivity matrix. As shown in Table 6, directly estimating all the instru~
ment biases except the pitot tube bias bu causes bu to emerge as a
dominant error in the estimation of Mw, Mu, and Zu. But, the same estimation

scheme removes bu as a major error source of Xw and Xu.

Sensitivity tables such as Tables 4 and 5 are useful in specifying the
accuracy required of the instruments or other aircraft parameters which affect
the accuracy of the estimated stability and control derivatives. As an example
of this application, Fig. 6 illustrates the deviation of the parameter Z8e due
to the uncertainty in the longitudinal position of the aircraft center-of-gravity.
For the Zde uncertainty to be less than 10%Z of the nominal value, the position
of the center-of-gravity must be known to within 0.4 ft.

3.3.2 Effect of Changed Input and Data Span

There are several other effects which must be considered in drawing general
conclusions of the importance of instrumentation errors on flight identification.

Some of these include:

1. The type and configuration of the aircraft being studied
2. The control input sequence used to excite the aircraft
3. The sampling rate and time span of the data collected

4, The types of instruments available

Doubling the amplitude of elevator deflection cuts the effect of bias errors

in half. All other error effects are unchanged by the increased amplitude. This
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Table 5

LONGITUDINAL PARAMETER SENSITIVITY TO INSTRUMENT ERRORS WHEN
INITIAL CONDITIONS AND BIASES EXCEPT bu ARE ESTIMATED

Random Scale Factors

e

e

Parameter eg eq Ca €y nx €nz q
Mq .486-02 | -.107-02 | -.254-01 | -.248-02 | -.113-02 .585-00 .560-00
Mw -.469-03 .44)1~02 .229-01 .195-02 .165-03 | -.290-02 .261-01
Zw -.198-01 .456-01 .229-01 .220-02 .734-03 | -.712-00 .661-00
Mu -.134-00 | -.454-01 .385-00 .480-01 .211--02 .260-00 .515-00
Zu -.142-00 | -.811-01 .529-00 .899-01 .143-02 .171-00 .569-00
Xu .124-02 .326-02 | ~,184-01 .933-02 | -.871-02 | -.101-01 .234-01
Xw .563-03 | -.187-02 { -.691-03 | -.171~02 .266-01 .223-02 .252-01
Mée -.204-00 | -.510-00 | -.179-00 .228-02 .135-02 .486-01 .154402
Z8e .186-00 .741-01 .787-01 .259-01 | ~.440-02 | -.2394+01 .783-00
Random Bias, Misalignments, and Center-of-Gravity
Position Errors
Parameter Oy “Vnx Ynz Cogx Ecpz

Mq -.137-03 | -.545-03 | -.352-03 | -.103-01 | .172-03

Mw .557-04 .891-04 | -.296-05 .109-04 .646-04

Zw .249-03 | .453-03 | .423-03| .103-01| .503-04

Mu .137-02 .120-02 | -.281-03 | -.212-04 | -.409-03

Zu .129-02 .783-03 | -.384-03 .438-03 | -.387-03

Xu -.607-04 | -.715~-03 .125-04 .150-04 .710-02

Xw -.132~-04 .127-01 | -.516-07 .190-04 | -.739-02

MSe .784-03 | .779-03 | -.749-04 | .613-04 | -.164-02

Zde -.196-02 | -.308-02 .893-03 .284-00 | -.242-02

Mean Errors—--Accelerometer Positions
and Angle-of-Attack Vane Position

Parameter €ax €az Evx
Mq -.103-01 .172-03 .172-04
Mw «354-04 .646-04 | -.245-04
Zw .103-01 .503-04 | -.146-04
Mu .502-03 | -.409-03 | -.524-03
Zu .116-02 | -.387-03 | -.722-03
Xu -.971-05 .710-02 247-04
Xw .193-04 | -.739-02 | -.293-06
Mée -.130-03 | ~-.164-02 .191-03
ZSe .284~00 | -.242-02 .506~04
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Table 6

DOMINANT RANDOM ERROR SOURCES FOR LONGITUDINAL PARAMETER IDENTIFICATION

All Biases
: Bilases.Not but bu
Parameter Estimated Estimated
Mq ehz’ e, cex enz’ eé, ech
Mw ba bu’ ed, e(.1
Mu bd noise, bu
Mde e4 eq
Zw be’ Ech €nz» 8ch
Zu be, ba noise, bu
Zde € xcg €xcg
Xw bu ’ Ynx Ynx ‘
Xu bu ecgz
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can be directly obtained from Eq. (2.59).

Another effect of input changes was found by doubling the puilse length
of the elevator deflections shown in Fig. 4 but halving the pulse amplitude.
The data sequence was doubled to 30 sec with samples taken 0.10 sec. The
resulting input had the same number of sample points and same area under the
input deflection curve. The results of the input time history as compared to
the baseline case are illustrated in Table 7. When biases are not estimated,
doubling the time span increased the noise-only and total errors for 4 para-
meters; it decreases the noise-only and total errors for three parameters;
and it increases the noise effect but reduces the total errors for two of the
parameters. Notice that phugoid mode parameter accuracy is generally improved
by increasing the time span, and the accuracy of the short period mode para-

meters is generally reduced.

As shown in Table 7, when biases are estimated, doubling the time span
and halving the input amplitude decreases the accuracy of all parameter estimates.
For this case, the combined effect of the reduced signal-to-noise ratio and the
sensitivity changes due to the addition of more parameters being estimated resulted
in no improved accuracies. Table 7 points out that any definite conclusions on

instrument accuracy effects are dependent upon the maneuvers flown and the para-

meters being estimated.

3.3.3 Effect of Fewer Instruments

The above results were obtained assuming that the aircraft has seven instru-
ments for obtaining longitudinal information. It was assumed that these instruments,
discussed in Section 2.3, had errors as modeled in Eqs.(2.60)-(2.61). Parameter
identification can be conducted with fewer instruments, and so it is desirable
to know what reducing the number of instruments has on the overall parameter
accuracy. It is known that reduced instrumentation increases the parameter
uncertainty due to white noise only. But it is conceivable that removing an

instrument also removes a major unmodeled and unestimated error source.

To test this idea, a set of runs was made in which different instruments
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Table 7

EFFECT OF DOUBLING THE TIME SPAN OF THE MEASUREMENT SEQUENCE WITH CONSTANT INPUT ENERGY

Reference Trajectory

Doubled Time Span

Biases Not Biases Biases Not Biases
Parameter Nominal Value Estimated Estimated Estimateﬁ- Estimatgd
Noise Totai_ Noise Total Noise Total Noise Total
Only Errors Only Errors - Only Errors Nnly Frrors
Mq -.719 s—l .182-2 - .704-2 .189-2 .683-2 .282-2 .787-2 .333-2 .724—2
Mw -.591d/f+s .359—3. .130-2 ~7455-3 .495-3 .432-3 .784-3 .123-2 .128-2
Mu ~.0295d/f+s ©.257-2 .353-1 «442-2 .588-2 .158-2 .214-1 .255-1 .270-1
Mée —16.?.3'-2 -.106-1 .788-1 L117-1 ﬂ778—1 .221-1 .837-1 .307-1 .798-1
Zw -.7625-l .914-3 .790—2 .103-2 L717-2 .142-2 .784-2 L 211-2 .718-2
Zu -.06175_l .345-2 L4841 .617-2 .753—2 .213-2 ;295—1 A.336—l‘ +353-1
Z8e -1.24f/d-s2 .167-1 150 .183-1 144 .342-1 i .191 .482-1 .153
Xw .0273s-1 <494-3 .675-2 .769-3 .852-2 .698-3 ‘.739—2 .128-2. .938-2
Xu .00701 s_1 ' .478-3 .596-2 -.il6-2 +376-2 .238-3 .249—2‘ .581-2 .597-2




were individually and collectively removed from use. The resulting deviation

of the parameters is shown in Table 8 for cases with bias estimated and not

estimated. The comments which can be made from Table 8 are:

Removal of the angle-of-attack vane approximately doubles the deviation
of Mu and Zu for both cases where biases are and are not estimated.
This is substantial in terms of the nominal values of these parameters.
The percentage change in the deviation of Mw is large, but the values

of the deviations are small with respect to the nominal value (.591).

Removal of the pitch angular accelerometer alone does not substantially
affect any of the parameter deviations. However, flight test personnel
have commented that they only correct for center-of-gravity position
errors in other inertial instruments when measurements of the angular
accelerations are directly available. So, in a practical sense, no

pitch accelerometer also means additional errors elsewhere.

Removal of the pitot tube alone when biases are not estimated has a
large effect on the total deviations of Xw and Xu. The removal increases
the deviation percentages from 24.7% and 85.1% to 32.8% and 125.8% for

Xw and Xu, respectively. Removal of the pitot tube when biases are esti-
mated has the largest effect on Mu, Zu, and Xu. However, the deviations
of these parameters with biases estimated are all smaller than when the

pitot tube data are used without estimating the biases.

Removal of the angle-of-attack vane, the pitot tube, and the pitch angular
accelerometer simultaneously makes it highly desirable to estimate biases.
For this situation, the parameters Mu, Zu, and Xu again were most highly
affected by the removal of the three instruments. The deviations of

all parameters but Zw and Z8e were increased by the instrument removal.

The data shown in Tables 3, 4, 5, and 8 are quite useful in specifying what

the best set of instruments are and what the corresponding instrument accuracies

must be to obtain parameter accuracies within some acceptable level. Figure 7

illustrates the effect of instrument bias variations on the accuracy of Mu for
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Table 8

EFFECT OF INSTRUMENT REMOVAL ON FARAMETER DEVIATIONS FOR BASELINE SET
OF ERRORS AND LONGITUDINAL EQUATIONS OF MOTION

No Angle-of- | No Pitch Angle | No Pitot Tube No o, 4,
- All Attack Vane Accelerometer (1) or u

Nominal Instruments (o) (q) No No
Parameter Value Biases” | bu’ Biases bu Biases bu Biases | Biases | Biases | Biases
Mq —.7193_1 . 704-2 -683-2 | .766-2 | .679-2 | .120-1 | .811-2 | .705-2 | .676~2 | .108-1 | .825-2
Mw -.591d/f-s | .130-2 .495-3 | .291-2 | .690-3 | .124-2 | .669-3 | .130-2 .869-3 | .290-2 | .171-2
Mu -.0295d/f+s | .353-1 -588-2 | .679-1 | .138-1 | .361-1 | .589-2 | .354-1 ] .182-1 | .716-1 .400-1
Mée —16.23-_2 .788-1 | .778-1| .792-1 | .785-1 | .181 .837-1 .788-1 | .784-1 | .151 .953-1
Zw -'.7628—l .790-2 «717-2 | .815-2 | .717-2 .926-2 | .738-2{.792-2 | .712~2 | .780-2 | .755-2
Zu -.0617s-l .484-1 | .753-2| .921-1 | .181~-1 | .490-1 | .763-2 .484-1| .318-1 | .960-1 | .527-1

Z8e —l.24f/d-s2 .150 144 .150 .143 148 | 144 .150 144 .148 .144
Xw .02735—l .675-2 .852-2 | .681-2 | .852-2 | .674-2  .852-2 | .896~2 .878-2 ] .897-2 | .878-2
Xu .007013—l .596-2 -376-2 | .608-2 | .384-2 | .596~2 | .376-2 { .882-2 | .505-2 | .937-2 | .658-2

*
"Biases" means that all biases are error

*%

Dimensions are: s =

second; d = degrees; f = feet.

sources; '"bu'" means all biases except bu are directly estimated.
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FIGURE 7 EFFECT OF VARIOUS INSTRUMENT BIASES ON THE ESTIMATION ACCURACY
OF THE PARAMETER Mu. ALSO SHOWN IS THE EFFECT OF NOT USING
THE ANGLE-OF-ATTACK VANE DATA.
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the baseline set of errors. The standard deviation of the vertical accelero-
meter, pitch attitude gyro, and éngle—of—attack vane biases are indicated by
the values where their curves cross the reference error line. Reduction of
the angle-of-attack vane bias can reduce the ratio of the standard deviation
of Mu to its nominal value from about 1.2 to 0.65. On the other hand, an
increase in either the vertical accelerometer or pitch attitude gyro bias
from the baseline values can cause large increases in the error in Mu. With
baseline error values , the removal of the angle-of-attack vane causes the
standard deviation of Mu to almost double (ratio goes from 1.2 to 2.3). If
biases are estimated, the standard deviation of Mu is reduced about 85%.
Removing.the use of the a-vane when biases are estimated still is considerably

better than the reference baseline case.

For some stability and control derivatives, it is possible to improve their
accuracy by not using an instrument's data. Figure 8 illustrates such a case.
Here, the ratio of the standard deviation of Xw to its nominal value is shown
as a function of the standard deviation of the pitot tube bias. For the base-
line reference case, the pitot tube's deviation is ome (1) ft/sec and it is
better to use the pitot tube data. If the maximum value of the pitot tube
bias is expected, however, (Refer to Table 1), it is better not to use this
data in estimating Xw. The cross—over deviation of bu beyond which the pitot

tube shouldn't be used is about 1.8 ft/sec.

3.3.4 Effect of Changing the Algorithm Weighting Matrix

Referring back to Table 8 again, to the case where the three instruments
are removed and the biases are estimated (last column), it can be seen that the
deviations of Mq, Mw, MSe, and Zw are acceptably small. The main contributions
to errors in Mu and Zu are due to noise. The chief error sources affecting
Z8e, Xw, and Xu are the center-of-gravity uncertainty and the misalignment of
the forward accelerometer. A flight test requirement might be to improvq the
accuracies of the two gyros and two linear accelerometers so these error sources
are acceptably reduced. This may also include better calibration of the center-

of-gravity position.
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PITOT TUBE BIAS - bu (ft / sec)

FIGURE 8 EFFECT OF PITOT TUBE BIAS ON THE ESTIMATION ACCURACY OF THE PARAMETER XWw
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More computer runs were made to determine the effect of reducing instrument
error values on the overall parameter accuracy when only four instruments are
used. The results are presented in Table 9. Concentration was placed on the
five parameters (Mu, Zu, ZSe, Xw, and Xu) with sizeable deviations. Case (a)
is the reference case which is the same as the last column of Table 8. In
Table 9, the parameter deviations due to noise only, to other errors, and their

root-sum-square total is shown.

In Case (b) , the standard deviations of the white noise errors were halved.
(The other error statistics were held constant.) This reduced the diagonal
elements of the matrix R used in the cost function J (see Eq.(2.6 )) to one-
fourth their reference value. This caused the anticipated result - the errors
in the five parameters due to noise were cut in half, and this significantly

affected the deviations of Mu and Zu.

In Case (c), the standard devigtions of the four noise sources and other
errors were set to the minimum values shown in Table 1. As was expected, the
deviations of the parameters due to noise only were all reduced. But surprise-
ingly, the error in Xu due to other errors increases. This is due to the fact
that in reducing the noise values, the ratios of the elements of the weighting
matrix R are changed. This causes the elements of the sensitivity matrix
of parameter deviations to error sources to change. In the case of Xu, the
sensitivity of Xu to the error in the vertical position of the center-of-
gravity increased from?9.0113/ft-sec to 0.0318/ft-sec. Thus, the deviation of Xu

also grew.

The best set of noise parameters (and cost function weighting terms) was
found to be setting the longitudinal accelerometer noise to the baseline value
and the other three terms to the minimum value. Results of this situation .are

shown as Case (d).

The above four cases illustrate that the effect of instrumentation error

sources on stability and control derivative estimate accuracies is also highly
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Table 9

EFFECT OF CHANGED NOISE VARIANCES ON TOTAL PARAMETER ESTIMATE DEVIATIONS

¢9

Noise Parameters Minimum Noise With
Referencg Case Halved Reduced Errors Special Case
(a) (b)* _ O (d*
Parameter Deviations Parameter Deviations Parameter Deviations Parameter Deviations
Nominal Noise Other Noise Other Noise Other Noise Other
Parameter Value Only | Errors | Total Only Errors | Total Only Errors | Total Only Errors | Total
Mu -.0295d4/f*s | .369-1| .153-1| .401-1| .185-1} .153-1 | .240-1| .528~2 | .140-1 | .149-1 | .529-2 | .136-1| .146-1
Zu —.06175_l .483-1 1 .212-1 | .527-1 | .242-1| .212-1 ) .321-1| .744~-2 | .235-1 | .246-1 | .811-2 | .146-1] .167-1
ZGe —l.24f/d-s2 .217-1 | .142 144 .109-1| .142 142 .928-2 | .720-1 | .726~-1§ .953-2 | .717-1]| .723-1
Xw .0273s—l .783-3 .875-2 ¢ .878-2 | .392-3| .875-2 | .876-2 | .793-4 | .278-2 ) .278-2 | .776-3 ] .273-2 | .284=~2
Xu .007015_1 .326-2( .571-2 | .658-2 | .163-2 | .571-2 | .594-2 | .679-3 | .804-2 | .807-2 | .164-2 | .358-2 | .393-2
= o, = ° . = ' M = ' . = ° . =
(a) A .15°; wq .10°/sec; Vg .005 g's; LA .005 g's; Ynx,z 6% ech,z .5 ft
= °. = ° : = ' . = ' . = °. =
(b) Wy .075°%; A .05°%/sec; L .0025 g's; v .0025 g's; Ynx,z .6°; Eégx,z .5 ft
(¢) w, = .015°; w = .015°/sec; w_ = .0005 g's; w = .0025 g's; v = ,15%; ¢ = .25 ft
0 q nx nz nx,z cex,z
= o, = . = e, = 1o = o, =
(d Wy = .015°; wq .015 /sec; Vo .005 g's; ., .0025 g's; Ynx,z .15°%; €cpx,z .25 ft.




dependént upon the weighting matrix used by the Newton-Raphson identification
algorithm. In fact, an important problem which should be solved is how to
choose the weighting matrix for the identification process so that the total

parameter deviations due to all types of measurement errors are minimized.

3.4 Effect of Lateral Measurement Errors

Similar program runs to those discussed in Section 3.3 were made for the
lateral equations of motion of the F-4 aircraft. Again, seven instruments
were modeled which are described by Eqs.(2.60)-(2.61). The range of instrument
and calibration errors investigatedlare similar to those of the longitudinal

instruments, and they are presented in Table 10.

The aileron and rudder deflections used to excite the lateral motion and
the resulting aircraft trajectory are depicted in Fig. 9. Again, a 15 sec time
span was simulated, and 300 data points accuring every 0.05 sec. were processed.
The trajectory shown in Fig. 9 was used as the reference case for the lateral

study.

A study was made of the identification process applied to the reference
trajectory using the baseline, minimum, and maximum sets of instrument errors
listed in Table 10. The results are presented in Table 1ll. The conclusions

which can be made from the lateral study with all seven instruments are:

1. The addition of non-noise error sources to the output measurements
causes a substantial effect on the accuracy of the estimated parameters.
The standard deviations of YB, Y68a, Y8r, Lp, and Np increased by over
an order of magnitude for the baseline case. The standard deviation
of Y8a increased from about 3% to 164% of the nominal value. These
increases are depicted more clearly in Fig. 10. The trends are the

same for the minimum and maximum error value cases.

2. Unlike the longitudinal equations of motion, the addition of bias

-estimation was more detrimental than good. Of the 13 parameters
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Table 10

LATERAL INSTRUMENT ERRORS
STANDARD DEVIATIONS

Full Scale Random Noise Random Biases Random Scale Factors
Instrument Units Deflection® | Minimum | Base | Maximum | Minimum | Base Maximum | Minimum | Base | Maximum
Angle~-of-sideslip
vane deg 10 .005 .05 .05 .005 .05 .05 .057% YA 5%
Roll rate gyro deg/sec 30-150 .015 .10 .75 .015 .10 .75 .05% 5% .5%
Yaw rate gyro . deg/sec 30-60 .015 .10 .30 .015 .10 .30 .057% .5% .57
Roll attitude gyro deg 360 .09 .50 .90 .09 .50 .90 .05% .5% 5%
Lateral accelerometer | g's .2 .0001 .0005 .001 .0001 .0005 .001 .05% 57 .5%
Roll accelerometer deg/sec2 30-60 .015 .10 .30 .015 .10 .30 .05% .57% .57
Yaw accelerometer deg/sec2 30-60 .015 .10 .30 .015 .10 .30 .05% .5% 5%
Bandwidth | Standard
Deviation
Other Types of Instrument Errors Minimum | Base | Maximum Instrument Lags (sec'l) (%)
Rate gyro misalignment (deg) .15 .60 .90 Gyros 150 5
Rate gyro mass unbalance (deg/sec-g) .025 .60 Linear accelerometers 600 5
Angular accelerometer misalignment (deg) .15 .60 .90 Angular accelerometers 180 10
Angular accelerometer sensitivity to
linear acceleration (deg/secz-g) .10 .60 Tape recorder 6 5
Center-of-gravity uncertainty (ft) .25 .5 1.0
*
When a range of deflection values is given, the lower number is associated with the minimum random errors. The larger

number is associated with the maximum random errors.
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Table 11

STANDARD DEVIATIONS OF PARAMETER ESTIMATES DUE TO INSTRUMENT ERRORS
LATERAL EQUATIONS OF MOTION

99

Baseline Errors Minimum Errors Maximum Errors
Biases Not Biases® Biases Not Biased" Biases Not Biases®
A% Estimated Estimated Estimated Estimated Estimated Estimated
Nominal Noise Total | Noise " Total | Noise Total | Noise Total | Noise Total | Noise Total
Parameter Value Only | Errors Only Errors| Only | Errors Only | Errors Only Errors Only | Errors
Y8 —.157s—1 .347-3] .683-2 | .356-3 | .636-2 |.581-4| .310-2 | .599-4 | .296~2 | .820-3| .133~-1} .845-3} .117-1
Y&a —.003383_l .102-3 | .554-2 | .136-3 | .694-2 | .199-4| .278-2 | .246-4| .327-2 | .211-3| .110-1| .297-3| .141-1
Yor .0246s_l .117-3{ .295-2 | .124~3 | .305-2 | .230-4 | .150-2 | .242-4 | .156-2 | .239~-3| .574-2 | .254~3 | .604~2
LB —15.985_2 .388~-1 | .247 .401-1 | .271 .584~2 | .572-1) .611-2 | .127 .108 .537 2112 .536
Lp —1.6083—l .298-2 | .375-1 .317-2 | .585-1 | .464-3} .143-1| .510-3| .237-1| .923-2 | .107 .945-2 | ,131
Lr .3845_1 .114-1 | .389-1| .115-1 | .595-1 |.175-2 | .132-1} .179-2| .303-1] .339-1 .106 | .341-1 .110
Lda 10.925_2 .130-1 |-.941-1| .152-1 | ,764~1 }.201-2 | .256-1| .235~-2 | .179-1| .386-1 | .243 .431-1} .950-1
Lér 2.548—2 .118-1| .862-1} .123-1 | .557-1 |.180-2 | .217-1} .188-2 | .608-1| .345-1| .217 .356-1| .144
NB 6.5633_2 .341-2 | .232-1{ .370-2 | .206~-1 |.553-3 | .536-2{ .598-3| .741-2 | .872-2 | .681-1| .964-2 ,244-1
Np —.0997s_l .364-3 | .490-2 | .588-3 | .132-1 {.602-4 | .231-2| .978-4 | .546-2 | .961-3 .899-2: .150-2 | .280-1
Nr —.3433_1 .143-2 | .819-2 | .166-2 | .206-1 |.234~-3 | .331-2 | .271-3| .842-2 | .371-2| .162-1 | .432-2| ,484~-1
Nda .7O7s—2 .144-2 | .833~2 | .234-2 | .280-1 |.232-3 | .159-2| .383-3| .115-1 .379-2 .282-1{ .598-2| .624-1
NSr —3.9025_2 .705-2 |} .497-11 .713-2 | .434~-1 |.104-2 | .113-1| .105~2{ ,956-2 | ,183-1 .752—1i .187-1; .647-1

Biases of six instruments estimated.

*%

Dimension is:

s =

second.

Roll angle gyro bias is not directly estimated.
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estimated, only 4, 2, and 6 total standard deviations were lowered

by estimating biases for the baseline, minimum, and maximum error
sets, respectively. This is because the predominant error sources

are not due to biases for the lateral equations. By estimating biases,
the sensitivity of the parameters to the other error sources is generally
increased. Thus, the resulting estimate error increases. It is con-
cluded that for the range of instrument errors given and the trajectory
flown it is better not to estimate biases. However, the dependence

on the aircraft parameters and trajectory should be taken into account
before any general statement can be made concerning whether or not

biases should be estimated.

Tables 12 and 13 present the aircraft lateral parameter sensitivities to
the random and mean error sources which affect the accuracy of the system output
measurements. As with the longitudinal sensitivities presented in Tables 4 and
5, these sensitivities are useful for determining what the primary sources of
error are, which affect the estimation accuracy of the lateral parameters. The
sensitivities are also useful for specifying instrumentation and calibration

accuracy required to provide a given level of identification accuracy.

Table 14 presents the dominant random error sources which affect the
lateral parameters' variances. These sources were determined from use of
Tables 10, 12, and 13. To improve the estimation accuracy of any one given
parameter requires concentrating on lowering the magnitude of the chief error
sources affecting that parameter. For example, for a more accurate parameter
Np, the uncertainty in the center-of-gravity position of the aircraft should

be reduced.

The effect of reducing the number of instruments used to measure lateral
motion was also studied. Table 15 contains the results of simulating the
identification process while removing individually and collectively the angle-
of -sideslip vane, the roll angle accelerometer, and the yaw angle accelero-

meter. Conclusions which can be made from Table 15 are:
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Table 12

LATERAL PARAMETER SENSITIVITY TO INSTRUMENT ERRORS
WHEN NO BIASES- ARE ESTIMATED

Random Biases g
Parameter Dg 05 by b bny b5 133
Y8 -.560-02 | -.160-02 | -.420-03 | -.265-03 | ~.2314+01 | -.142-03{ -.342-04
L8 -.580-00 | -.959-00 | -.179-00 | -.143-00 | -.499+01 | -.306-01 | -.306-01
NB -.994-02 | -.810-01 { -.163-01 | -.140-01 | -.150+01 | -.889-02 .201-02
Lp «112-02 | ~.294-01 | -.486-02 | -.352-02 .275401 .355-02 | -.504-03
Np .204-02 { -.835-02 | -.189-02 | -.147-02 | -.111+01 | -.599-03 | -.215-03
Lr -.396-03 | -.475-02 .128-01 .153-01 .141+402 .163-01 | -.289-02
Nr .698-02 )} -.269-01 | -.525-02 | ~.322-02 | -.136+01 | -.470-02 .159-04
Yéa -.166-03 | -.838-03 | -.241-03 | -.148-03 | -.910-00 | -.779=04 | —.445-04
L§a ~.257-01 | -.255-00 | -.633-01 | -.532-01 | ~.2404+02 | -.295-01 | -.106-01
NSa -.790-02 .923-02 .182-02 .916-03 .168+01 .306-04 .192-03
YSr -.295-03 | -.509-03 | -.183-03 | ~.979-04 | -.120401 .201-05 | ~.720-04
Iér ~.522-01} -.394-00 | -.769-01 | ~.611-01 | -.438+01 | ~.300-01 | -.205-01
N§r .137-00 | -.421-01 | -.106-01 | -.622-02 { -.2634+01 | -.812-02 | -.195-02
Random Scale Factors
Parameter €3 €p Cr €g eny ep €t
18 .720-02 .990-03 .947-02 | -,258-03 [ -.157-00 .106-01 .129-00
18 .697-00 | -.240+01 .957-00 | =.144-00 | -.277-01 | -.122402 { .131+02
NB .214-01 | -.779-01 .431-01 | -.549-02 { -.362-01 { -.549-00 .604-00
Lp -.359-02 .121+00 | -.886-03 .949-02 | ~.241-02 | -.130-00 .671-02
Np -.213-02 .249-01 | -.361-02 .434-03 | -.658-02 .529-01 | -.659-01
Lr -.105-01 | -.172-00 | -.159~01 | -.104-01 | -.110+00 .570-00 { ~.251-00
Nr -.398-02 | -.248-01 | -.514-02 | -.495-02 .152-00 .340-01 | -.147-00
Yéa .168-03 | ~.283-03 .197-03 | -.980-04 | -.378-02 .326-04 .382-03
LSa .272-01 .176+01 .215-01 «524-02 .638-02 .908+01 .237-01
Nda .934-02 .726-01 .109-01 | °,302-03 | ..313-02 .410-00 .201-00
Yér .262-03 .327-03 .530-04 | -.766-04 .246-01 | -,159-03 | -.423-03
18t .358-01 { -.864-00 .857-02 | -.105+00 | -.151-01 .353+01 | -.461-01
Nér -.171-00 [ -.120+00 | ~.230-00 | ~.985-02 | -.736~05 | -=.285-01 | ~.334+01
Random Misalignments and ‘Center-of-Gravity Position Errors
Parameter Yp Yr B Tr Scgx Ceoz
Y8 .582-05 | -.293-03 .102-03 | -,249-02 | -.967-02 .859-02
LB -.759-02 | -.396-01 | ~.970-01 | -.283-00 .109+00 .109-01
NB -.377-03 | -.221-02 | -.425-02 | -.187-01 .319-01.| .119-02
Lp .401-03 | ~.130-02 .133-02 | -.685-02 .738-01 .393-02
Np .584-05 .224-03 .526-05 .179-02 [ ~.913-02 | -.224-03
Lr -.162-02 | ~.214-02 | -.201-01 .111-02 .603-01 .287-01
Nr -.198-03 .282-03 | -.234-02 .545-02 | -975-02 -.812-02
Ysa .129-05 .108-04 | -.104-05 .541-04 .110-01 .580-03
Léa -.238-02 .490-02 | -.103-01 .268-01 | -.136-00 | -.125-01
Néa -.233-03 | -.181-03 | ~.136-03 | -.146-02 | ~.154-01 | -.944-03
Yér -.241-05 .104-04 .142-05 .116-03 .339-02 { -.467-02
Lér .248-02 | -.958-03 .652-01 .131-01 | -.106+00 | -.529-02
Nér -.358-04 .758-02 .297-03 .696-01 +347-01 .195-02
Mean Errors--Accelerometer Positions
and Angle-of-Sideslip Vane Position
Parameter £ax €az Evx
Y8 -.967-02 | -.859-02 .199-05
LB .109+00 { -.109-01 .121-03
NB .318-01 | -.119-02 +443-04
Lp .738-01 | -.393-02 | -.826~05
Np -.913-02 .224-03 .726-06
Lr .604-01 | -.287-01 | -.850~-04
Nr -.974-02 .812-02 | -.102-04
Yé8a .110-01 | -.580-03 | -.721-08
Léa -.136~-00 .125-01 .318-04
Néa -.154~01 .944-03 .842-05
Ydr .339-02 .467-02 .260-06
Lér -.106+00 | ..529-02 | -.272-04
Nér " .347-01 | -.195-02 | -.689-04
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Table 13

LATERAL PARAMETER SENSITIVITY TO INSTRUMENT ERRORS WHEN
INITIAL CONDITIONS AND BIASES EXCEPT b, ARE ESTIMATED

¢
Random Scale Factors
Parameter €3 € Cr €4 eny s er
Y8 .671-02 .126-02 .959-02 | -.950-04 | -.158~-00 .102-01 .130-00
LB .626-00| -.197+01 .958-00 | -.322-01 | -.472-01 | -=.130+02 .134+02
NB .285-01 | -.185-01 | .460-01 | -.489-02 | -.358-01 | -.562-00 | .547-00
Lp ~.674-02 .187-00 .346-02 .177-01 | -.271-02 | -.237-00 .457-01
Np .766-03 .433-01 .294-02 | -.111-02 | -.607-02 .526-01 | -.865-01
Lr -.119-01 .184-02 .224-01 { -.107-01 | -.106+00 .361-00 | -.212-00
Nr .159-02 .147-01 .392-02 | -.743-02 .153-00 .262-01 | ~.184-00
Yda -.352-03} -.505-02 .256-03 .266-03 | ~.407-02 .186-02 .371-02
Léa -.194-01 .1324+01 .337-01 .514~01 | -.195-01 .926+01 .292-00
Nda .492-02 .168-00 .480-02 .111-01 414-02 .255-00 «259-00
YSr .299-03 .152-02 .656-04 .618-05 .245-01{ -.127-02 | -.551-03
Lér .342-01 ] ~.764-00 .977-02 | -.679-01 | -.209-01 337401 | -.227-01
NSr -.156-00 | -.172-00 .227-00 | -.127-01 | -.158-02 .514-01 —.338+0{J
Random Bias, Misalignments, and Center-of-Gravity Position Errors
Parameter Py Yo Yr 5 Yt [ Cepx €cgz
Y8 -.957-05 .333-05 .278-03 .105-03 | -.239-02 | -.862-02 .863-02
LB -.109-01 | -.979-02 .368-01 | -.935-01 | -.233-00 .397-00 .287-01
NB ~-.546-03 | -.547-03 .323-02 | -.406-02 | -.295~01 | -.165-01 | -.179-02
Lp -.658-03 .235-03 | =.103-02 .156-02 | ..686-04 117400 .669-02
Np ~.127-04 | -.195-04 ! .152-03 .161-04 | -.210-02 | -.261-01 | -.127-02
Lr -.894-03 | -.188-02 ! -.261-02 | -.199-01 .627-02 .109+00 .321-01
Nr -.162-03 | -.269-03 | -.406-03 | -,229-02 | -.150-02 | -.396-01 | -.994-02
Yéa -.171-04 .487-05 i .103-03 | -.709-06 .772-03 .138-01 .736-03
Léa -.291-02 | -.233-02 | .135-01 | -.973-02 .859-01 .509-01 | -.236-02
Néa -.833-04 | -.401-03 ! -.193-03 .104~03 .805-02 .546-01 .364-02
Yér -.512-06 | -.466-05, .485-05 .333-05 .115-03 .394-02 | -.464-02
LSr -.351-02 .174-02 ¢ -.143-02 .663~01 .176-01 | -.616-~01 | -.246-02
N§r -.255-03 .410-06 .768-02 .250-03 .651-01| -.120-02 | -.439-03
L

Mean Errors--Accelerometer Positions
and Angle-of-Sideslip Vane Position

Parameter €ax €az Evx
YB .862-02 | -.863-02 .158-05
LB .397-00 | -.287-01 .297-04
NB .166-01 .179-02 .614-04
Lp .117+00 | -.669-02 | —=.156-04
Np .261-01 .127-02 .722-05
Lr .109+00 | -.321-01 { -.860-04
Nr .396-01 .994-02 .175-05
Yda .138-01 { -.736~-03 | -.131-05
Léa .510-01 .236-02 | ~.863-04
NSa .546-01 | -.364~02 .878-06
Y8a .394-02 464-02 .368-06
Léa .616-01 246-02 | -.269-04
NSa .115-02 .439-03 | -.573-04

70



Table 14

DOMINANT RANDOM ERROR SOURCES FOR LATERAL PARAMETER IDENTIFICATION

Biases Not All Biases But

Parameter Estimated ¢ Estimated

Y8 Doy Cegx’ Scgz Ye» Segx Segz

Yé8a €cpx Y sch, Ecgz

tor ny ' fcgx® Fegz fegx® Segz

L8 bp 5 Y, €cgx Yis Cegx

Lp Eegx ech

Lr Yﬁ’ ech, eégz Yoo ech, cgz

Léa bp, €cgx ess Y3, ech

Lér bp, ech e, Yﬁ’ ;5 Eégx

NB bp, b@’ Y& Ecgx ;5 sch

Np €cgx Eégx

Nr bp, Yg o ech, Ecgz echz Ecgz

Nda Cegx Eégx

Nér es Yi» sch e Yf
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Table 15

EFFECT OF INSTRUMENT REMOVAL ON PARAMETER DEVIATIONS FOR BASELINE SET
OF ERRORS AND LATERAL EQUATIONS OF MOTION

cL

No Angle of No Roll Angle No Yaw Angle
Kk All Sideslip Vane | Accelerometer | Accelerometer No B, P,
Nominal Instruments. (B) (p) (r) or
Parameter Value - [ Biases b~ | Biases bo Biases b¢ Biases bo Biases b¢
Y8 --.157s“1 .683-2 | .636-2 | .692-2 | .647-2 | .720-2 | .654-2 | .792-2 | .598-2 | .951-2 | .694-2
Y8a —.003385-l .554-2 | .694~2 | .553-2 | .700-2 | .548~2 | .706-2 | .553-2 | .748-2 | .544-2 | .803-2
Yér .02465—1 .295-2 1} .305-2 | .295-2 | .304-2 | .283-2 | .295-2 | .292-2 | .306-2 | .275-2 | .298-2
LB —15.983_2 . 247 .271 .250 .270 .270 .264 .339 .397 .363 .416
Lp -1.6085"l .375-1| .585-1{ .380-1| .597-1 | .495-1 { .671-1 | .407-1 | .657-1 | .557-1 | .739-1
Lr .3845_l .389-1 | .595-1 | .407-1 | .609-1 | .143 .105 .418-1 | .567-1 1} .150 .855-1
LSa 10.923_2 .941-1 1 .764-1 | .967-1 | .786-1 | .204 - | .148 .101 .915-1 | .215 .796-1
Lér 2.545_2 .862-1 | .557-1 | .887-1| .561-1 | .227 .126 .830-1§ .327-1 | .246 .119
NB 6.5633_2 .232-1 | .206-1 | .240-1 | .214-1} .367-1 | .249-1 ] .250-1 | .134-1 | .374-1 ] .202-1
Np —.0997s_l .490-2 | .132-1 | .491-2 | .134-1 | .510-2 | .146-1 | .476-2 | .156-1 | .460-2 | .178-1
Nr —.3435_1 .819-2 | .206-1 | .864-2 | .210-1 | .896-2 | .211-1 | .899-2 ; .257-1 | .851-2 | .284~1
NSa .707s_2 .833-2 | .280-1 | .864-2 | .282-1 | .168-1 | .242-1| .125-1 | .358-1 | .243-1 | .342-1
Nér —3.9023"2 497-1 | .434-1.4 .520-1 | .455-1 | .513-1 | .431-1 | .905-1 | .569-1  .115 .790-1

"Biases' means that all biases are error sources; 'b¢'" means all biases except b¢ are directly estimated.

Dimension is: s = seconds



Removal of the angle-of-gideslip vane has very little effect on the

accuracy of the parameters.

Removal of the roll angular accelerometer has a sizeable effect on
the accuracy of Lp, Lr, Léa, Lér, NB, and Néa. The largest effect
is on Lr with the standard deviation increasing from about 10% to

37%Z of the nominal parameter value.

Removal of the yaw angular accelerometer has a marked effect on the
accuracies of LB, N8a, and Nér, with Nér's standard deviation increasing
by 82%.

Removal of the sideslip vane and the roll and yaw angular accelerometers
simultaneously caused standard deviation of Y8a, Yér, and Np to de-

crease. The maximum increase was for Lr.

Estimating biases caused little improvément in the identification accuracy.
More standard deviation magnitudes were increased than decreased,
which again points out the fact that biases are not the prime source

of error for lateral parameters.
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SUMMARY AND CONCLUSIONS

Two techniques - ensemble analysis and simulated data analysis - have
been developed for determining the effects of instrumentation errors on
identified aircraft parameter accuracy. The instrument errors contaminate
the measured data which is used in the identification process. The analysis
techniques are based on the assumption that an output error identification

technique such as the modified Newton - Raphson algorithm is used.

The two statistical analysis techniques have been coded into a digital
computer program which allows rapid assessment of the error effects. The

uses which can be made of this program include the following:

1. The determination of the effect of instrumentation errors on the
statistical accuracy of the stability and control derivatives and
other parameters identified from flight test data can be made. This
includes the mean error and standard deviation of each of the para-
meters identified. The contribution of each error source on each

parameter is determined.

2, The effects of such variables as aircraft type and flight conditionm,
control input sequence, and data sampling rate on the accuracy of

the identified parameters can be determined.

3. Tradeoff studies can be made between instrument quality and identi-

fication accuracy.

4. Different combinations of instruments can be studied for use in

collecting the flight data.

5. Tradeoff studies between fewer instruments with greater quality and

more instruments with larger errors can be made.

6. The necessary instrument accuracy required in a flight test program
to allow identifying aircraft parameters to a desired level of certainty

can be specified.
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To exercise this program and determine the effect of some of the instru-

ment errors on the variation of the identified stability and control deriva-

tives, a study was conducted using the McDonnell F-4C aircraft. Both longitu-

dinal and lateral equations of motion were utilized. Error sources assumed

present were output measurement biases, scale factor errors, and correlated

errors due to instrument misalignment, etc. Some of the general conclusions

which can be made from the results of this study include:

The instrumentation errors which are not due to noise can have
very large effects on the identification accuracy. 1In the tests
run, a growth in the standard deviations of many of the identified

parameters exceeded an order of magnitude.

Improvement can be made in the accuracy of the parameters by
identifying the values of the dominant bias errors affecting the data.
For the longitudinal equations of the F-4, identifying measurement
biases generally improved the parameter accuracy obtained. However,
identifying biases for the lateral equations was of little value
because the dominant errors were from other sources. Adding the
capability of identifying error sources which are of minor importance

generally reduces the overall accuracy of the identified parameters

because the same information is used to determine more quantities.

The ratio of elements in the weighting matrix R of the cost function
used by the Newton - Raphson scheme has an important roll in the over-
all accuracy of the identified parameters. Changing the ratio of
these elements changes the sensitivity of the identified parameter
variations due to each error source. The effect of an error source
which has a large variation can be minimized with the proper choice

of the weighting matrix elements.

The key output of the analysis program is the sensitivity matrix of
the stability and control derivative errors to each of the instrument-
ation error sources. With this matrix and an estimate of the instru-

ment quality available, the test engineer can determine what the
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accuracy of the identified aircraft parameters will be. He can
also specify what instrumentation qualitv is necessary in order

to identify the parameters to a desired level of accuracy.

5. The control input sequence is a very important part of minimizing
the effect of instrumentation errors and the uncertainty in the
accuracy of the identified parameters. Also important to the
parameter accuracy is the data sampling rate and the length of

the data span.

The above conclusions were based on linear analysis. Further conclusions
can be expected if dynamic errors, control measurement errors, and known non-

linear errors would also be included.

Finally, it must be emphasized that no extensive laboratory or inflight
study has been made of the kinds of errors that are prevalent in most flight
instrumentation, including a statistical description of the error magnitudes.
The range of instrument errors used in the study of this report were based
on conversations with flight test personnel and reviewing instrument company
literature. The information obtained from these sources was not in the statis-~

tical form necessary for the analysis, SO assumptions had to be made.
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\')

RECOMMENDATIONS

In order to make general conclusions concerning the effect of instrument-

ation errors on aircraft parameter identification, the following extensions to

the study presented in Section III should be made:

The effects of all known instrument errors not studied in this report
should be determined. This includes instrument dynamics, control measure-

ment errors, and non-linear error sources.

Different types of aircraft and different flight regimes should be

studied to determine their effect on the overall conclusions.

A method of finding the "best' control input sequence corresponding
to the available instruments used to collect flight data should be
found. Always using the best control sequence in each study would
remove the dependence of the accuracies on the control input. If
the same control input is used when studying different sets of
instrgmentS, it is conceivable that one instrument set will produce
better results solely because the input sequence is more favorable

to that set.

Similarly, a method should be obtained for finding the most favorable
weighting matrix used in the cost function of the Newton - Raphson
identification algorithm. This matrix should tend to minimize the

effect of the most prominant unidentified error sources.

It should be established whether other error sources in addition to
output biases can be identified. 1In cases where these other error
sources are more dominant, identification accuracy can possibly be

improved by identifying them as parameters and removing their effect.

In order that instrumentation quality can be specified to meet the

flight test objectives, a method must be established to define what

constitutes an acceptable level of aircraft parameter uncertainty.
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Based on the results of studying the F-4C aircraft, the following re-
commendations are offered to insure that adequate instrumentation is provided

for identification purposes:

1. It was shown that instrumentation errors can produce significant
increases in the identified parameter uncertainty. Therefore,
the instrumentation quality required, including basic instrument
accuracies, mounting accuracies, and recording equipment accuracies,

should be specified prior to any flight test program.

2. To insure that these specifications are met, laboratory and flight
test studies should be made of all aircraft instrumentation used
to collect data for identification. Statistical measurements of
the instrument accuracy should be obtained to provide compatibility

with the analysis methods.

3. In addition to using instruments of necessary quality, care should
be taken to align the instruments' sensitive axes, to calibrate the
instruments, and to measure the instruments' and c.g. locations within

the tolerances specified.

This study has also shown that the specification of flight instrumentation
may be sensitive to the particular flight control input sequence. Therefore,
it is recommended that a means be developed to display the desired input to
the pilot or to generate this input directly into the control system. Also,

a method should be provided to tell the pilot if sufficient information is
contained in the data collected during each maneuver which will enable identi-

fication of the parameters to the level of accuracy desired.
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A.l

A.2

A.2.1

APPENDIX A

SUMMARY OF EQUATIONS CODED IN ANALYSIS PROGRAM

Explanation of Time Increments Used by Program

The three time steps which are used in the program are:

AtL - This is the time step of the Runge-Kutta integration

package. It is set small enough so the effect of the
highest frequency dynamics is cofrectly simulated.

This term is usually governed by the control or output
measurement lag with the smallest time constant.

This is the sample time increment used by the identifi-
cation process. When measurement lags are ignored, it

is also used as the integration step.

This is the time delay that governs when sampling of the
control input is made after time zero. Normally,

0<1 f_Ats. Use of T enables sampling the control input

at different time points than the output measurements.

Simulated Data Analysis Subprogram - Mode 1

Simulated Airplane Equations

The equations governing the simulated airplane are:

X

L]

Fx + Guinput; x(0) = 2, (A.1)

Yp = HE +Duy ot (A.2)

(true output)
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yr = TyT + B (A.3)
(indicated output - no lags)

(effect of lags)
= A.5
Y=Yty (A.5)
(recorded output. If lags are present, this

samples y, every AtS seconds starting at
time Atéb

A.2.2 Control Input Equations

The equations governing the recorded control input are:

= A.6
u uinput ¢ )
(true control which is input to program)
u. =Tu+B (A.7)
I c c
(indicated control with no lags)
y = . = A-8
up FcuL + FcuI’ uL(O) uI(o) ( )
(effect of lags)
*
u.=u,+w_, (A.9)

mi i ci

(recorded input. If lags are present, this samples

uL every Ats seconds starting at time T.)

* Note The control measurement noise is only used in the Monte Carlo
Mode (Mode 2) of the Simulated Data Analysis., It is set
to zero otherwise (Mode 1).

80



A.2.3 Ensemble Analysis Subprogram Equations

The random errors are first analyzed.

To do this, the follow-
ing equations are first integrated and evaluated in the ensemble
analysis subprogram:

X=FR+Gu; R(0) =x

0 (A.10)
(Ats integration step)
d A A R A
H(a:)=F<g§)+g—F x+g—G- u ; G =0 (A.11)
P Pp Pp Pp Pp
d (a}? ) (aﬁ ) 8%
S (%X )\ F ; (0) =1 (A.12)
dt | 9ppe 9Prc 3Py
(for each initial condition estimated)
g—g=ug§+¥§+%u (A.13)
p p Pp p
(from Eq. A.2)
gy =Hg_x (A.14)
Pic P1c
(for each initial condition estimated)
_g_z = 1 (A.15)
Py
(for each bias term estimated)
Vi o [ayi 9y ayi} (A.16)
§p app OPIC 7gpb
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) n Y 5% '
3%y _ 2 Vi -1 Yy
3ol [ % 0 4173

P )

i=1
2 2 -1
Invert _3_%_ £ E—-%- (A.18)
op op

A.2.4 Simulated Data Analysis Subprogram Equations for Random Errors

Next, each of the random output measurement errors is

sequenced, The object is to evaluate:

n
9
0J _ _ A T -1 yi
> - E (yi yi) R . (A.19)

and

2 7 -1 T
o = - |23 o » (A.20)
op P

First, the effect of each unestimated output measurement bias

is computed. This affects only the residual of Eq. (A.19) as:
(Yi - Yi) = ypq4 YT B (A.21)

Then, each of the output transformation errors of T 1is sequenced.

Again, the effect on Eq. (A.19) is:

(v; -9 = T(Hszi + Du,) - (ch:.L +Du;) = (T - I) (HR, + Du,) (A.22)
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Then, each of the unestimated initial condition errors is sequenced.

This requires the integration of Eq. (A.l) with x(0) = X Then, from Eq.(A.2),

- %)) = - %) = H(x - % (A.23)

(yi yi) (yTi yi) (i xi)
Next, the control measurement errors due to Tc and BC are sequenced.

To do this, the previous results of integrating Eq. (A.10) are first

stored. These state values represent the true airplane equations

in this case. So

= X A.24
x, = %, (4.24)

Then, Eqs. (A.10), (A.11), and (A.12) are reintegrated using the At_ in-

tegration step and modified u e Equations (A.12) - (A.18) are then

reevaluated. For bias errors

u ., =u, +B (A.25)
mi i c

For scale factor errors

[

umi i

For the random errors, the total parameter covariance is

. r

' T " T
= _ A.27
E{Spbpl =E _  + > (6, 6p,") | (A.27)
j=1

where r is the number of random error sources. Eﬁoise is the co-

variance of the parameter estimate errors due to the output noise vy

Enoise is either set to Eq: (A.18) or computed using the Monte Carlo

option with
(v, -~ ¥,) =w, (A.28)

at each time point.
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A.2.5 Mean Errors

The mean errors are also sequenced. These include some
elements in the T matrix (Eq. (A.3) and all elements in Fm and Fc
(Eqs. (A.4) and (A.8)). 1If there are no lag errors input, the.evalua-
tion is just like Eq. (A.22).

If there are control measurement lag errors, Eq. (A.8) needs
to be evaluated with u; = u, over each interval Ats. The integra-

tion step is AtL. The stored u

i is sampled every Ats but begin-

ning T seconds after time zero.

If there are output lags, Eq. (A.4) needs evaluation. This
requires reintegration of Eq. (A.l), with x(0) = ﬁo, and Eq. (A.4) of
the form

y, = -F, y, +E_ (Hx + Du) (A.29)

The step size is AtL. The output of Eq. (A.29) is sampled every

Ats seconds with

= A.30
Yy % VL4 (A.30)
Again, Eqs. (A.10) - (A.18) need to be reevaluated in case of control
lags. Equations (A.10) - (A.12) use an integration stép size of Ats,
however. The effect on Eq. (A.19) is '
-5 = - R A.31
7Yy = ypg T Ry 4 Dupy) (&.31)

A.3 Simulated Data Analysis Subprogram - Mode 2

The random errors contained in B, part of T, BC Tc, and x, are
generated at the beginning of each run using the input standard devia-
tions and the random number generator. They are held constant during
each single Monte Carlo run. The random noise LA and W.j are regener-
ated each sample point during each run. Each of the mean errors in T
plus elements of Fm and FC are set equal to the values input and are

not changed during any of the rums.
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For output measurement errors in T, B and wy only, the
residual (yi - ?i) in Eq. (A.19) is computed by
—A= D - L .2
y; = §; = T(HR, +Du) + B+ w, - (HK + Du)) - (A.32)

For random initial conditions added, Eq. (A.1l) must be integrated
each time and Eq. (A.32) gets changed to

y; = 9, = T(Hx; + Duy) + B+ w, - (HX + Du,) (A.33)

For non-lag control measurement errors, Eqs. (A.7) and (A.9)

get combined so that at each sample point

u

mi (A.34)

=Tu+B +w
c c ci

where wCi is randomly generated each time point. Because of this

change, Eqs. (A.10) - (A.12) require integration each pass through,
and Eqs. (A.13) - (A.18) require re-evaluation each pass through., With
these changes, Eq. (A.33) becomes
y; - 9y = T(Hx; +Du) + B +w, - (HX, + Du .) (A.35)
For lags in the control input measurements and output measure-
ments, two integration step sizes have to be used. First, Eqs. (A.1) -
(A.4) are evaluated using the AtL step. The resulting L is sampled
every Ats seconds starting at time Ats. Then, Eq. (A.5) is evaluated
and the resulting YL stored. Next, Eqs. (A.7) - (A.8) are evaluated using
the AtL step. The resulting u is sampled every Ats seconds starting

at time T. Then, Eq. (A.9) is evaluated and the resulting u stored,

, i
Next, Egs. (A.;O)— (A.12) are evaluated using the Ats step and the stored

umi.

Eq. (A.19) is computed using

Then, Egs. (A.13) - (A.18) are evaluated. Then, the residual for

AR PR Pl (Hx + Dumi) (A.36)
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In Mode 2, LA is used just like w

i i’

In Mode 2 , several Monte Carlo runs are made. In
each run, the values of the random elements in T, B, and §o are ran-
domly generated at the beginning of the run. For comparison, the
standard deviations used to generate these values are the same as
those values used one at a time in Mode 1. These random values
remain constant throughout a run, but change from run to run. The
white noise vector LA is randomly generated, and it changes every
sample point throughout the run. Those mean error sources in T,
Fm, and Fc which aren't random are held constant throughout all the
runs. The error Apj in the parameter vector obtained from each run

is saved. For m Monte Carlo runs, the mean error in p is

g+~

m
Foarml=L ) m (4.37)

j=1

The standard deviation about this mean is

m

E {6pop’} = ;1; Z (dp, - 2p) (bp, - )" (A.38)
j=1

For small values of the error sources, the results of Eq. (A.38) should
match those of Eq. (A.27). Also, Eq. (A.37) should match the value of

the mean obtained in Mode 1.
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A4 Ensemble Error Analysis Subprogram

A.4.1 OQutput Errors

The basic equation which is used to compute changes in the

parameters is

5 o [BZJ]_l 337
p—— — —

n
) ) )
N i -1 9y i -1 . \T
= <4 3 — R — —_— . -
2 5 o=t | D o R (4.20)

=
]
=
[}
n
[ay

The y, are the sampled measurements taken from the aircraft
(Eqs. (A.1) - (A.5)) and the ?i are the simulated values ob;ained.from

the measured control input (Eqs. (A.6) - (A.9) and Eq. (A.10)). The
term 8?1 - comes from Egs. (A.11l) - (A.16).
op
It is assumed that if lag errors exist, lag terms are present
in all control input and system output measurement equations. If the

measurements of vy have lags, the dynamic equations can be written as

x = Fx + Gu (A.1)

vy, = —meL + Fm(T [Hx+Du] +B) ‘ (A.39)

Otherwise, the output equations are of the form

y = T@Hx + Du) + B ' (A.40)
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The sensitivity of v to each error e is computed. For

biases,
).
de 1

For errors due to the matrix T, the sensitivity can be found as

8y _ 3T
e Te (Hx + Du)

For initial condition errors,

3y | g%
de dJe

where the term %g comes from integrating

d fax\_ ox . 3x -
a'£<$>* Fie 5 3¢ (O I

When output lags are present, the sensitivity differential

equation comes from Eq. (A.39), and is

d LY. _ ™ |_ - L
dt <a?>‘ 3e [ y, * B 7 Du} Fn e

The results of Eqs. (A.41) through (A.45) are combined into a general

dy.

Szi for each error e which affects the output measurements.
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A.4.2 Control Input Errors

With respect to Eq. (A.20), the error effect on the term 9i
is computed. The differential equations of the simulated aircraft are

L = . = - (A.46)
u = -Fu + FC(TCu + Bc) ; uL(_O) = uI(O) |

A oa . (A.47)
X =FX + GuLi )

& _ous 4 (A.48)
y:,L = Hx_i + DuLi

For control measurement lags the following equations, that come

from Eqs. (A.46 and (A.47), are first integrated.

A A 3u A
d_ X - 9x _L X _ (A.49)
dt (?E) F3e *C3c 3¢ O =0
Ju ) du oF :
dt (Be - Foge T3¢ ¢ u, oy 32% (0 = 3;} (0)
Then, from Eq. (A.48)
3y o% du '
i i Li
- A.51
de H3e * 0D de ( ‘
For control scale factor errors, the program first integrates
d % 3% e dg
X - 99X — - =
i 32 F 3o + G 3 Y5 3a (0 0 (A.52)

(A.53)
For control biases, the Program integrates
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(A.54)
20 12 9B
b4
e = B3 * D o (A.55)
A.4.3 Effect on Parameter Estimates
The sensitivity of parameter estimates due to output measure-
ment is of the form
. T
D REAE R z Wy
5o (Gp) = —-2— '5;‘ R a—e—' (A.56)
op i=1
dy.,
where g—i- comes from evaluating Eqs. (A.41) through (A.45).
e -
The sensitivity of parameter estimates due to control input
errors is of the form
-1 n 5
d 323 : 8§'1T R Eﬁ
op i=1
8§ri
where-g—— comes from evaluating Eqs.

(A.51), (A.53), and (A.55).
For random errors, the total parameter covariance is

T, _ ) T, .3 T
E {6p ép} = Enoise +-—5é(6p)E {e e”} &;‘(5p)
For mean errors, the mean parameter error is

(A.58)
E {6p} = gééR)E{e}

(A.59)
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